skip to main content
research-article

ShapeMOD: macro operation discovery for 3D shape programs

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

A popular way to create detailed yet easily controllable 3D shapes is via procedural modeling, i.e. generating geometry using programs. Such programs consist of a series of instructions along with their associated parameter values. To fully realize the benefits of this representation, a shape program should be compact and only expose degrees of freedom that allow for meaningful manipulation of output geometry. One way to achieve this goal is to design higher-level macro operators that, when executed, expand into a series of commands from the base shape modeling language. However, manually authoring such macros, much like shape programs themselves, is difficult and largely restricted to domain experts. In this paper, we present ShapeMOD, an algorithm for automatically discovering macros that are useful across large datasets of 3D shape programs. ShapeMOD operates on shape programs expressed in an imperative, statement-based language. It is designed to discover macros that make programs more compact by minimizing the number of function calls and free parameters required to represent an input shape collection. We run ShapeMOD on multiple collections of programs expressed in a domain-specific language for 3D shape structures. We show that it automatically discovers a concise set of macros that abstract out common structural and parametric patterns that generalize over large shape collections. We also demonstrate that the macros found by ShapeMOD improve performance on downstream tasks including shape generative modeling and inferring programs from point clouds. Finally, we conduct a user study that indicates that ShapeMOD's discovered macros make interactive shape editing more efficient.

Skip Supplemental Material Section

Supplemental Material

3450626.3459821.mp4
a153-jones.mp4

References

  1. Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2018. Learning Representations and Generative Models for 3D Point Clouds. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stockholm Sweden, 40--49. http://proceedings.mlr.press/v80/achlioptas18a.htmlGoogle ScholarGoogle Scholar
  2. Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. arXiv:1512.03012 (2015).Google ScholarGoogle Scholar
  3. Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu, and Hao Zhang. 2020. Learning Generative Models of 3D Structures. Computer Graphics Forum (2020). Google ScholarGoogle ScholarCross RefCross Ref
  4. Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape Modeling. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  5. Eyal Dechter, Jon Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum. 2013. Bootstrap Learning via Modular Concept Discovery. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (Beijing, China) (IJCAI '13). AAAI Press, 1302--1309.Google ScholarGoogle Scholar
  6. Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi. 2020. CvxNet: Learnable Convex Decomposition. (June 2020).Google ScholarGoogle Scholar
  7. Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. InverseCSG: Automatic Conversion of 3D Models to CSG Trees. ACM Trans. Graph. 37, 6 (Dec. 2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2018a. Library Learning for Neurally-Guided Bayesian Program Induction. In Advances in Neural Information Processing Systems (NeurIPS).Google ScholarGoogle Scholar
  9. Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. 2019. Write, Execute, Assess: Program Synthesis with a REPL. In Advances in Neural Information Processing Systems (NeurIPS).Google ScholarGoogle Scholar
  10. Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. 2018b. Learning to Infer Graphics Programs from Hand-Drawn Images. In Advances in Neural Information Processing Systems (NeurIPS).Google ScholarGoogle Scholar
  11. Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales, Luke Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2020. DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning. arXiv:2006.08381 [cs.AI]Google ScholarGoogle Scholar
  12. Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao (Richard) Zhang. 2019. SDM-NET: Deep Generative Network for Structured Deformable Mesh. In SIGGRAPH Asia.Google ScholarGoogle Scholar
  13. Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas Funkhouser. 2019. Learning shape templates with structured implicit functions. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 7154--7164.Google ScholarGoogle ScholarCross RefCross Ref
  14. Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry. 2018. AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  15. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In NeurIPS.Google ScholarGoogle Scholar
  16. Irvin Hwang, Andreas Stuhlmüller, and Noah D. Goodman. 2011. Inducing Probabilistic Programs by Bayesian Program Merging. CoRR arXiv:1110.5667 (2011).Google ScholarGoogle Scholar
  17. R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: Learning to Generate Programs for 3D Shape Structure Synthesis. ACM Transactions on Graphics (TOG), Siggraph Asia 2020 39, 6 (2020), Article 234.Google ScholarGoogle Scholar
  18. Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Transactions on Graphics 36, 4 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. 2011. Converting 3D Furniture Models to Fabricatable Parts and Connectors. Association for Computing Machinery, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas. 2017. GRASS: Generative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG) 36, 4 (2017), 52.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sidi Lu, Jiayuan Mao, Joshua B. Tenenbaum, and Jiajun Wu. 2019. Neurally-Guided Structure Inference. In International Conference on Machine Learning (ICML).Google ScholarGoogle Scholar
  22. A. Martinovic and L. Van Gool. 2013. Bayesian Grammar Learning for Inverse Procedural Modeling. In CVPR.Google ScholarGoogle Scholar
  23. Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy J. Mitra. 2009. Abstraction of Man-Made Shapes. ACM Transactions on Graphics 28, 5 (2009), #137, 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Niloy Mitra, Michael Wand, Hao (Richard) Zhang, Daniel Cohen-Or, Vladimir Kim, and Qi-Xing Huang. 2013. Structure-Aware Shape Processing. In SIGGRAPH Asia 2013 Courses. Article 1, 20 pages.Google ScholarGoogle Scholar
  25. Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas Guibas. 2019a. StructureNet: Hierarchical Graph Networks for 3D Shape Generation. In SIGGRAPH Asia.Google ScholarGoogle Scholar
  26. Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su. 2019b. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  27. Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006. Procedural Modeling of Buildings. In SIGGRAPH.Google ScholarGoogle Scholar
  28. Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthesizing Structured CAD Models with Equality Saturation and Inverse Transformations. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 31--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yoav I. H. Parish and Pascal Müller. 2001. Procedural Modeling of Cities. In SIGGRAPH. Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 1996. The Algorithmic Beauty of Plants. Springer-Verlag, Berlin, Heidelberg.Google ScholarGoogle Scholar
  30. Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 652--660.Google ScholarGoogle Scholar
  31. Daniel Ritchie, Sarah Jobalia, and Anna Thomas. 2018. Example-based Authoring of Procedural Modeling Programs with Structural and Continuous Variability. In EUROGRAPHICS.Google ScholarGoogle Scholar
  32. Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. 2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  33. Chun-Yu Sun, Qian-Fang Zou, Xin Tong, and Yang Liu. 2019. Learning Adaptive Hierarchical Cuboid Abstractions of 3D Shape Collections. ACM Trans. Graph. 38, 6, Article 241 (Nov. 2019), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jerry O. Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah D. Goodman, and Radomír Mech. 2012. Learning design patterns with Bayesian grammar induction. In UIST.Google ScholarGoogle Scholar
  35. Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: A New Approach to Optimization (POPL '09). Association for Computing Machinery, New York, NY, USA, 264--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu. 2019. Learning to Infer and Execute 3D Shape Programs. In International Conference on Learning Representations (ICLR).Google ScholarGoogle Scholar
  37. Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. 2017. Learning Shape Abstractions by Assembling Volumetric Primitives. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  38. Homer Walke, R. Kenny Jones, and Daniel Ritchie. 2020. Learning to Infer Shape Programs Using Latent Execution Self Training. arXiv:2011.13045 [cs.CV]Google ScholarGoogle Scholar
  39. Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech Matusik. 2020. Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Reconstruction. arXiv preprint arXiv:2010.02392 (2020).Google ScholarGoogle Scholar
  40. Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock, and Adriana Schulz. 2019. Carpentry Compiler. ACM Trans. Graph. 38, 6, Article 195 (Nov. 2019), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenenbaum. 2016. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. In Advances in Neural Information Processing Systems (NeurIPS).Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas J. Guibas, and Lin Gao. 2020. DSM-Net: Disentangled Structured Mesh Net for Controllable Generation of Fine Geometry. arXiv:2008.05440 [cs.GR]Google ScholarGoogle Scholar
  43. Mehmet Ersin Yumer and Levent Burak Kara. 2012. Co-Abstraction of Shape Collections. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2012) 31 (2012), 166:1--166:11. Issue 6.Google ScholarGoogle Scholar
  44. Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 2017. 3D-PRNN: Generating Shape Primitives with Recurrent Neural Networks. In IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. ShapeMOD: macro operation discovery for 3D shape programs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 40, Issue 4
          August 2021
          2170 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3450626
          Issue’s Table of Contents

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 July 2021
          Published in tog Volume 40, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader