skip to main content
research-article

Geometry and tool motion planning for curvature adapted CNC machining

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

CNC machining is the leading subtractive manufacturing technology. Although it is in use since decades, it is far from fully solved and still a rich source for challenging problems in geometric computing. We demonstrate this at hand of 5-axis machining of freeform surfaces, where the degrees of freedom in selecting and moving the cutting tool allow one to adapt the tool motion optimally to the surface to be produced. We aim at a high-quality surface finish, thereby reducing the need for hard-to-control post-machining processes such as grinding and polishing. Our work is based on a careful geometric analysis of curvature-adapted machining via so-called second order line contact between tool and target surface. On the geometric side, this leads to a new continuous transition between "dual" classical results in surface theory concerning osculating circles of surface curves and osculating cones of tangentially circumscribed developable surfaces. Practically, it serves as an effective basis for tool motion planning. Unlike previous approaches to curvature-adapted machining, we solve locally optimal tool positioning and motion planning within a single optimization framework and achieve curvature adaptation even for convex surfaces. This is possible with a toroidal cutter that contains a negatively curved cutting area. The effectiveness of our approach is verified at hand of digital models, simulations and machined parts, including a comparison to results generated with commercial software.

Skip Supplemental Material Section

Supplemental Material

3450626.3459837.mp4

References

  1. Yusuf Altintas. 2012. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge Univ. Press.Google ScholarGoogle ScholarCross RefCross Ref
  2. Xavier Beudaert, Sylvain Lavernhe, and Christophe Tournier. 2012. Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path. International Journal of Machine Tools and Manufacture 57 (2012), 73--82.Google ScholarGoogle ScholarCross RefCross Ref
  3. Wilhelm Blaschke and Kurt Leichtweiß. 1973. Elementare Differentialgeometrie. Springer, Berlin-New York. Fünfte vollständig neubearbeitete Auflage von K. Leichtweiß, Die Grundlehren der mathematischen Wissenschaften, Band 1.Google ScholarGoogle Scholar
  4. Amaia Calleja, Pengbo Bo, Haizea González, Michael Bartoň, and Luis Norberto López de Lacalle. 2018. Highly accurate 5-axis flank CNC machining with conical tools. The International Journal of Advanced Manufacturing Technology 97, 5 (2018), 1605--1615.Google ScholarGoogle ScholarCross RefCross Ref
  5. Francisco J. Campa, Luis Norberto López de Lacalle, Aitzol Lamikiz, and José Antonio Sanchez. 2007. Selection of cutting conditions for a stable milling of flexible parts with bull-nose end mills. Journal of Materials Processing Technology 191, 1 (2007), 279--282.Google ScholarGoogle ScholarCross RefCross Ref
  6. Li-Xin Cao, Hu Gong, and Jian Liu. 2007. The offset approach of machining free form surface: Part 2: Toroidal cutter in 5-axis NC machine tools. Journal of Materials Processing Technology 184, 1-3 (2007), 6--11.Google ScholarGoogle ScholarCross RefCross Ref
  7. Frederic Cazals and Marc Pouget. 2003. Estimating differential quantities using polynomial fitting of osculating jets. In Symp. Geometry processing, L. Kobbelt, P. Schröder, and H. Hoppe (Eds.). Eurographics, 177--178.Google ScholarGoogle Scholar
  8. Jung-Woo Chang, Wenping Wang, and Myung-Soo Kim. 2010. Efficient collision detection using a dual OBB-sphere bounding volume hierarchy. Computer-Aided Design 42, 1 (2010), 50--57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Byoung K. Choi and Robert B. Jerard. 1998. Sculptured Surface Machining: Theory and Applications. Kluwer.Google ScholarGoogle Scholar
  10. Dawson-Haggerty et al. 2019. trimesh. https://trimsh.org/Google ScholarGoogle Scholar
  11. LN López De Lacalle, C Angulo, A Lamikiz, and JA Sanchez. 2006. Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. Journal of Materials Processing Technology 172, 1 (2006), 11--15.Google ScholarGoogle ScholarCross RefCross Ref
  12. Simon Duenser, Roi Poranne, Bernhard Thomaszewski, and Stelian Coros. 2020. Robo-Cut: hot-wire cutting with robot-controlled flexible rods. ACM Transactions on Graphics (TOG) 39, 4 (2020), 98--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Serafettin Engin and Yusuf Altintas. 2001. Mechanics and dynamics of general milling cutters.: Part I: helical end mills. International Journal of Machine Tools and Manufacture 41, 15 (2001), 2195--2212.Google ScholarGoogle ScholarCross RefCross Ref
  14. Jianhua Fan and Alan Ball. 2014. Flat-end cutter orientation on a quadric in five-axis machining. Computer-Aided Design 53 (2014), 126--138.Google ScholarGoogle ScholarCross RefCross Ref
  15. Ramy Harik, Hu Gong, and Alain Bernard. 2013. 5-axis flank milling: A state-of-the-art review. Computer-Aided Design 45, 3 (2013), 796--808.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Bernard W Ikua, Hisataka Tanaka, Fumio Obata, and Satoshi Sakamoto. 2001. Prediction of cutting forces and machining error in ball end milling of curved surfaces-I theoretical analysis. Precision Engineering 25, 4 (2001), 266--273.Google ScholarGoogle ScholarCross RefCross Ref
  17. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.Google ScholarGoogle Scholar
  18. C. Greg Jensen and D. G. Anderson. 1993. Accurate tool placement and orientation for finish surface machining. J. Design and Manufacturing 3, 4 (1993), 251--261.Google ScholarGoogle Scholar
  19. C. Greg Jensen, W. Edward Red, and C. Ernst. 2008. Machining Free-Form Surface Cavities Using a Combination of Traditional and Non-Traditional Multi-Axis Machining Methods. Computer-Aided Design & Applications 5 (2008), 241--253.Google ScholarGoogle ScholarCross RefCross Ref
  20. C Greg Jensen, W Edward Red, and J Pi. 2002. Tool selection for five-axis curvature matched machining. Computer-Aided Design 34, 3 (2002), 251--266.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yong-Joon Kim, Michael Bartoň, Gershon Elber, and Helmut Pottmann. 2015. Precise gouging-free tool orientations for 5-axis CNC machining. Computer-Aided Design 58 (2015), 220--229.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  23. Ali Lasemi, Deyi Xue, and Peihua Gu. 2010. Recent development in CNC machining of freeform surfaces: A state-of-the-art review. Computer-Aided Design, 42, 7 (2010), 641--657.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. X. Li and R. B. Jerard. 1994. 5-axis machining of sculptured surfaces with a flat-end cutter. Computer-Aided Design 26, 3 (1994), 165--178.Google ScholarGoogle ScholarCross RefCross Ref
  25. Jinesh Machchhar, Denys Plakhotnik, and Gershon Elber. 2017. Precise algebraic-based swept volumes for arbitrary free-form shaped tools towards multi-axis CNC machining verification. Computer-Aided Design 90 (2017), 48--58.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ali Mahdavi-Amiri, Fenggen Yu, Haisen Zhao, Adriana Schulz, and Hao Zhang. 2020. VDAC: volume decompose-and-carve for subtractive manufacturing. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Gustav J. Olling, Byoung K. Choi, and Robert B. Jerard. 1999. Machining Impossible Shapes. Kluwer, Boston.Google ScholarGoogle Scholar
  28. Pierre-Yves Pechard, Christophe Tournier, Claire Lartigue, and Jean-Pierre Lugarini. 2009. Geometrical deviations versus smoothness in 5-axis high-speed flank milling. International Journal of Machine Tools and Manufacture 49 (2009), 453--461.Google ScholarGoogle ScholarCross RefCross Ref
  29. Davide Pellis, Hui Wang, Martin Kilian, Florian Rist, Helmut Pottmann, and Christian Müller. 2020. Principal symmetric meshes. ACM Trans. Graphics 39, 4 (2020), 127:1--127:17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Helmut Pottmann and Johannes Wallner. 2001. Computational Line Geometry. Springer.Google ScholarGoogle Scholar
  31. Stephane Redon, Ming C Lin, Dinesh Manocha, and Young J Kim. 2005. Fast continuous collision detection for articulated models. Journal of Computing and Information Science in Engineering 5, 2 (2005), 126--137.Google ScholarGoogle ScholarCross RefCross Ref
  32. Alec Rivers, Ilan E Moyer, and Frédo Durand. 2012. Position-correcting tools for 2D digital fabrication. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. David Roth, Sanjeev Bedi, Fathi Ismail, and Steven Mann. 2001. Surface swept by a toroidal cutter during 5-axis machining. Computer-Aided Design 33, 1 (2001), 57--63.Google ScholarGoogle ScholarCross RefCross Ref
  34. Knut Sorby, Kjell Tonnessen, Jan Erik Torjusen, and Finn Ola Rasch. 2000. Improving high speed flank milling operations in multi-axis machines. CIRP Annals-Manufacturing Technology 49, 1 (2000), 371--374.Google ScholarGoogle ScholarCross RefCross Ref
  35. Oded Stein, Eitan Grinspun, and Keenan Crane. 2018. Developability of Triangle Meshes. ACM Transactions on Graphics 37, 4 (2018), 1--14. Proc. SIGGRAPH.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tran Duc Tang. 2014. Algorithms for collision detection and avoidance for five-axis NC machining: A state of the art review. Computer-Aided Design 51 (2014), 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  37. Xiaochun Wang, S. K. Ghosh, Y .B. Li, and Xutang Wu. 1993a. Curvature catering - a new approach in manufacture of sculptured surfaces (Part 1. theorem). Journal of Materials Processing Technology 38, 1--2 (1993), 159--175.Google ScholarGoogle Scholar
  38. Xiaochun Wang, S. K. Ghosh, Y .B. Li, and Xutang Wu. 1993b. Curvature catering - a new approach in manufacture of sculptured surfaces (Part 2. methodology). Journal of Materials Processing Technology 38, 1--2 (1993), 177--193.Google ScholarGoogle Scholar
  39. Andrew Warkentin, Fathi Ismail, and Sanjeev Bedi. 2000. Comparison between multipoint and other 5-axis tool positioning strategies. Journal of Machine Tools & Manufacture 40 (2000), 185--208.Google ScholarGoogle ScholarCross RefCross Ref
  40. Joung-Hahn Yoon, Helmut Pottmann, and Yuan-Shin Lee. 2003. Locally optimal cutting positions for five-axis sculptured surface machining. Computer-Aided Design 35 (2003), 69--81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Haisen Zhao, Hao Zhang, Shiqing Xin, Yuanmin Deng, Changhe Tu, Wenping Wang, Daniel Cohen-Or, and Baoquan Chen. 2018. DSCarver: Decompose-and-Spiral-Carve for Subtractive Manufacturing. ACM Transactions on Graphics (Special Issue of SIGGRAPH) 37, 4 (2018), Article No. 137.Google ScholarGoogle Scholar
  42. L. Zhu, G. Zheng, H. Ding, and Y. Xiong. 2010. Global optimization of tool path for five-axis flank milling with a conical cutter. Computer-Aided Design 42, 10 (2010), 903--910.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Qiang Zou, Juyong Zhang, Bailin Deng, and Jibin Zhao. 2014. Iso-level tool path planning for free-form surfaces. Computer-Aided Design 53 (2014), 117--125.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Geometry and tool motion planning for curvature adapted CNC machining

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader