skip to main content
research-article

Using isometries for computational design and fabrication

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We solve the task of representing free forms by an arrangement of panels that are manufacturable by precise isometric bending of surfaces made from a small number of molds. In fact we manage to solve the paneling task with surfaces of constant Gaussian curvature alone. This includes the case of developable surfaces which exhibit zero curvature. Our computations are based on an existing discrete model of isometric mappings between surfaces which for this occasion has been refined to obtain higher numerical accuracy. Further topics are interesting connections of the paneling problem with the geometry of Killing vector fields, designing and actuating isometries, curved folding in the double-curved case, and quad meshes with rigid faces that are nevertheless flexible.

Skip Supplemental Material Section

Supplemental Material

a42-jiang.mp4
3450626.3459839.mp4

References

  1. Dmitrij V. Alekseevskij, Ernest B. Vinberg, and Aleksandr S. Solodovnikov. 1993. Geometry of spaces of constant curvature. In Geometry II. Springer, 1--138.Google ScholarGoogle Scholar
  2. Niccolo Baldassini, Nicolas Leduc, and Alexander Schiftner. 2013. Construction aware design of curved glass facades: The Eiffel Tower Pavilions. In Glass Performance Days Finland (Conference Proceedings). 406--410.Google ScholarGoogle Scholar
  3. Eric Baldwin. 2018. SOM Designs Kinematic Sculpture for Chicago Design Week. ArchDaily (Jan 19). https://www.archdaily.com/904506Google ScholarGoogle Scholar
  4. Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas Guibas. 2010. On Discrete Killing Vector Fields and Patterns on Surfaces. Comp. Graph. Forum 29, 5 (2010), 1701--1711.Google ScholarGoogle ScholarCross RefCross Ref
  5. Alexander Bobenko and Yuri Suris. 2008. Discrete differential geometry: Integrable Structure. American Math. Soc.Google ScholarGoogle Scholar
  6. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation. ACM Trans. Graph. 28, 3 (2009), 77:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. OpenMesh: A Generic and Efficient Polygon Mesh Data Structure. Proc. OpenSG Symposium. https://graphics.uni-bielefeld.de/publications/openmesh.pdf.Google ScholarGoogle Scholar
  8. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comp. Graph. Forum 31, 5 (2012), 1657--1667.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2008. Numerical geometry of non-rigid shapes. Springer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Frédéric Cazals and Marc Pouget. 2003. Estimating differential quantities using polynomial fitting of osculating jets. In Proc. Symp. Geometry Processing. 177--178.Google ScholarGoogle Scholar
  11. Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from Metric. ACM Trans. Graph. 37, 4 (2018), 63:1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Sebastian Claici, Mikhail Bessmeltsev, Scott Schaefer, and Justin Solomon. 2017. Isometry-Aware Preconditioning for Mesh Parameterization. Comp. Graph. Forum 36, 5 (2017), 37--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Robert Connelly. 1987. Infinitesimal Rigidity. In Theory of rigid structures (unpublished collection). http://pi.math.cornell.edu/~connelly/rigidity.chapter.2.pdfGoogle ScholarGoogle Scholar
  14. Manfredo do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.Google ScholarGoogle Scholar
  15. Lionel du Peloux, Olivier Baverel, Jean-François Caron, and Frédéric Tayeb. 2013. From shape to shell: a design tool to materialize freeform shapes using gridshell structures. In Rethinking Prototyping. Proc. Design Modelling Symposium Berlin.Google ScholarGoogle Scholar
  16. Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy Mitra, Helmut Pottmann, and Mark Pauly. 2010. Paneling Architectural Freeform Surfaces. ACM Trans. Graph. 29, 4 (2010), 45:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Konstantinos Gavriil, Ruslan Guseinov, Jesús Pérez, Davide Pellis, Paul Henderson, Florian Rist, Helmut Pottmann, and Bernd Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Trans. Graph. 39, 6 (2020), 208:1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. ACM Trans. Graph. 36, 4 (2017), 64:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. David W. Henderson and Daina Taimina. 2001. Crocheting the Hyperbolic Plane. Math. Intelligencer 23, 2 (2001), 17--28.Google ScholarGoogle ScholarCross RefCross Ref
  20. Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas Guibas. 2008. Non-Rigid Registration under Isometric Deformations. Comp. Graph. Forum 27, 5 (2008), 1449--1457.Google ScholarGoogle ScholarCross RefCross Ref
  21. Ivan Izmestiev. 2017. Classification of flexible Kokotsakis polyhedra with quadrangular base. Int. Math. Res. Not. 3 (2017), 715--808.Google ScholarGoogle Scholar
  22. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.ioGoogle ScholarGoogle Scholar
  23. Caigui Jiang, Cheng Wang, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2020. Quad-mesh based isometric mappings and developable surfaces. ACM Trans. Graph. 39, 4 (2020), 128:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. L. Klein, To. Wagner, C. Buchheim, and D. Biermann. 2014. A procedure for the evaluation and compensation of form errors by means of global isometric registration with subsequent local reoptimization. Prod. Eng. 8 (2014), 81--89.Google ScholarGoogle ScholarCross RefCross Ref
  25. Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. 37, 4 (2018), 106:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Michael Lewis. 1973. Roof Cladding of the Sydney Opera House. J. & Proc. Royal Soc. New South Wales 106 (1973), 18--32.Google ScholarGoogle Scholar
  27. Julian Lienhard, Simon Schleicher, Simon Poppinga, Tom Masselter, Markuks Milwich, Thomas Speck, and Jan Knippers. 2011. Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspir. Biomim. 6, Article 045001 (2011).Google ScholarGoogle Scholar
  28. Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2009. A local/global approach to mesh parametrization. Comp. Graph. Forum 27, 5 (2009), 1495--1504.Google ScholarGoogle ScholarCross RefCross Ref
  29. Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25, 3 (2006), 681--689.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Stuart P Lloyd. 1982. Least Squares Quantization in PCM. IEEE Trans. Information Th. 28 (1982), 129--137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. 2004. Methods for non-linear least squares problems (2nd ed.). Technical Univ. Denmark.Google ScholarGoogle Scholar
  32. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. 37, 6 (2018), 231:1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tom Masselter, Simon Poppinga, Julian Lienhard, Simon Schleicher, and Thomas Speck. 2012. The flower of Strelitzia reginae as concept generator for the development of a technical deformation system for architectural purposes. In Proc. 7th. Plant Biomechanics Int. Conf. INRIA, 389--392.Google ScholarGoogle Scholar
  34. Sumner B. Myers. 1936. Isometries of 2-dimensional Riemannian manifolds into themselves. Proc. Nat. Acad. Sc. USA 22 (1936), 297--300.Google ScholarGoogle ScholarCross RefCross Ref
  35. Julian Panetta, Mina Konaković-Luković, Florin Isvoranu, Etienne Bouleau, and Mark Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4 (2019), 83:1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Chi-Han Peng, Caigui Jiang, Peter Wonka, and Helmut Pottmann. 2019. Checkerboard Patterns with Black Rectangles. ACM Trans. Graph. 38, 6 (2019), 171:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Nico Pietroni, Marco Tarini, and Paolo Cignoni. 2010. Almost Isometric Mesh Parameterization through Abstract Domains. TVCG 16, 4 (2010), 621--635.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. 2015. Architectural Geometry. Computers & Graphics 47 (2015), 145--164.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Helmut Pottmann, Qi-Xing Huang, Yong-Liang Yang, and Shi-Min Hu. 2006. Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Computer Vision 67, 3 (2006), 277--296.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Helmut Pottmann, Johannes Wallner, and Stefan Leopoldseder. 2001. Kinematical methods for the classification, reconstruction and inspection of surfaces. In SMAI 2001: Congrès national de mathématiques appliquées et industrielles. 51--60.Google ScholarGoogle Scholar
  41. Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2019. Modeling Curved Folding with Freeform Deformations. ACM Trans. Graph. 38, 6 (2019), 170:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Idzhad Kh. Sabitov. 1992. Local Theory of Bendings of Surfaces. In Geometry III. Springer, 179--256.Google ScholarGoogle Scholar
  43. Alexei Sacharow, Jonathan Balzer, Dirk Biermann, and Tobias Surmann. 2011. Non-rigid isometric ICP. Computer-Aided Design 43 (2011), 1758--1768.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Josua Sassen, Behrend Heeren, Klaus Hildebrandt, and Martin Rumpf. 2020. Geometric optimization using nonlinear rotation-invariant coordinates. Computer Aided Geom. Des. 77, Article 101829 (2020).Google ScholarGoogle Scholar
  45. Robert Sauer. 1970. Differenzengeometrie. Springer.Google ScholarGoogle Scholar
  46. Alexander Schiftner, Michael Eigensatz, Martin Kilian, and Gery Chinzi. 2013. Large scale double curved glass facades made feasible - The Arena Corinthians West Facade. In Glass Performance Days Finland (Conference Proceedings). 494 -- 498.Google ScholarGoogle Scholar
  47. Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011a. As-Killing-As-Possible Vector Fields for Planar Deformation. Comp. Graph. Forum 30, 5 (2011), 1543--1552.Google ScholarGoogle ScholarCross RefCross Ref
  48. Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011b. Discovery of Intrinsic Primitives on Triangle Meshes. Comp. Graph. Forum 30, 2 (2011), 365--374.Google ScholarGoogle ScholarCross RefCross Ref
  49. Olga Sorkine and Mark Alexa. 2007. As-rigid-as-possible surface modeling. In Proc. Symposium Geometry Processing. 109--116.Google ScholarGoogle Scholar
  50. Sivan Toledo. 2003. Taucs, A Library of Sparse Linear Solvers. Tel Aviv University. www.tau.ac.il/~stoledo/taucsGoogle ScholarGoogle Scholar
  51. Michael Wand, Philipp Jenke, Qixing Huang, Martin Bokeloh, Leonidas Guibas, and Andreas Schilling. 2007. Reconstruction of Deforming Geometry from Time-Varying Point Clouds. In Proc. Symp. Geometry Processing. 49--58.Google ScholarGoogle Scholar
  52. Hui Wang, Davide Pellis, Florian Rist, Helmut Pottmann, and Christian Müller. 2019. Discrete Geodesic Parallel Coordinates. ACM Trans. Graph. 38, 6 (2019), 173:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Walter Wunderlich. 1951. Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitzungsber. Österr. Ak. Wiss. II 160 (1951), 39--77.Google ScholarGoogle Scholar

Index Terms

  1. Using isometries for computational design and fabrication

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader