skip to main content
research-article
Open Access

A gradient-based framework for 3D print appearance optimization

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

In full-color inkjet 3D printing, a key problem is determining the material configuration for the millions of voxels that a printed object is made of. The goal is a configuration that minimises the difference between desired target appearance and the result of the printing process. So far, the techniques used to find such a configuration have relied on domain-specific methods or heuristic optimization, which allowed only a limited level of control over the resulting appearance.

We propose to use differentiable volume rendering in a continuous material-mixture space, which leads to a framework that can be used as a general tool for optimising inkjet 3D printouts. We demonstrate the technical feasibility of this approach, and use it to attain fine control over the fabricated appearance, and high levels of faithfulness to the specified target.

Skip Supplemental Material Section

Supplemental Material

3450626.3459844.mp4

References

  1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. http://tensorflow.org/ Software available from tensorflow.org.Google ScholarGoogle Scholar
  2. Navid Ansari, Omid Alizadeh-Mousavi, Hans-Peter Seidel, and Vahid Babaei. 2020. Mixed integer ink selection for spectral reproduction. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 39, 6 (Nov. 2020), 255:1--255:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Thomas Auzinger, Wolfgang Heidrich, and Bernd Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics (Proc. SIGGRAPH) 37, 4 (July 2018), 159:1--159:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexandre Kaspar, Piotr Didyk, and Wojciech Matusik. 2017. Color Contoning for 3D Printing. ACM Transactions on Graphics (Proc. SIGGRAPH) 36, 4 (July 2017), 124:1--124:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. 2017. Automatic Differentiation in Machine Learning: a Survey. Journal of Machine Learning Research 18, 1 (2017), 5595--5637.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alan Brunton, Can Ates Arikan, Tejas Madan Tanksale, and Philipp Urban. 2018. 3D Printing Spatially Varying Color and Translucency. ACM Transactions on Graphics (Proc. SIGGRAPH) 37, 4 (July 2018), 157:1--157:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Alan Brunton, Can Ates Arikan, and Philipp Urban. 2015. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM Transactions on Graphics 35, 1 (Dec. 2015), 4:1--4:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020. Towards Learning-based Inverse Subsurface Scattering. In 2020 IEEE International Conference on Computational Photography, ICCP 2020, Saint Louis, MO, USA, April 24-26, 2020. IEEE, New York, NY, USA, 1--12. Google ScholarGoogle ScholarCross RefCross Ref
  9. Guan-Hao Chen, Chun-Ling Yang, Lai-Man Po, and Sheng-Li Xie. 2006. Edge-Based Structural Similarity for Image Quality Assessment. In IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Vol. 2. IEEE, New York, NY, USA, 933--936.Google ScholarGoogle Scholar
  10. Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4 (July 2010), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research 12, Jul (2011), 2121--2159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. 2008. Efficient Projections onto the L1-Ball for Learning in High Dimensions. In 25th International Conference on Machine Learning (Helsinki, Finland) (ICML '08). Association for Computing Machinery, New York, NY, USA, 272--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd Bickel, Alexander Wilkie, and Jaroslav Křivánek. 2017. Scattering-aware Texture Reproduction for 3D Printing. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 36, 6 (Nov. 2017), 241:1--241:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Roland W Fleming and Heinrich H Bülthoff. 2005. Low-level image cues in the perception of translucent materials. ACM Transactions on Applied Perception (TAP) 2, 3 (2005), 346--382.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. R. Frisvad, S. A. Jensen, J. S. Madsen, A. Correia, L. Yang, S. K. S. Gregersen, Y. Meuret, and P.-E. Hansen. 2020. Survey of Models for Acquiring the Optical Properties of Translucent Materials. Computer Graphics Forum 39, 2 (2020), 729--755. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14023 Google ScholarGoogle ScholarCross RefCross Ref
  16. Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An Evaluation of Computational Imaging Techniques for Heterogeneous Inverse Scattering. In European Conference on Computer Vision. Springer, Berlin, Germany, 685--701. Google ScholarGoogle ScholarCross RefCross Ref
  17. Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013. Inverse volume rendering with material dictionaries. ACM Transactions on Graphics (TOG) 32, 6 (2013), 162:1--162:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Miloš Hašan, Martin Fuchs, Wojciech Matusik, Hanspeter Pfister, and Szymon Rusinkiewicz. 2010. Physical Reproduction of Materials with Specified Subsurface Scattering. ACM Trans. Graph. 29, 4, Article 61 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Roman Hochuli, Samuel Powell, Simon Arridge, and Ben Cox. 2016. Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance. Journal of biomedical optics 21, 12 (2016), 126004.Google ScholarGoogle ScholarCross RefCross Ref
  20. Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner. 2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph. 35, 1 (2015), 1--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable monte carlo ray tracing through edge sampling. ACM Transactions on Graphics (TOG) 37, 6 (July 2018), 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M Ronnier Luo, Guihua Cui, and Bryan Rigg. 2001. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur 26, 5 (2001), 340--350.Google ScholarGoogle Scholar
  23. A. Luongo, V. Falster, M. B. Doest, M. M. Ribo, E. R. Eiriksson, D. B. Pedersen, and J. R. Frisvad. 2020. Microstructure Control in 3D Printing with Digital Light Processing. Computer Graphics Forum 39, 1 (2020), 347--359. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13807 Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Magnor, G. Kindlmann, N. Duric, and C. Hansen. 2004. Constrained inverse volume rendering for planetary nebulae. In IEEE Visualization 2004. IEEE, New York, NY, USA, 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K McLaren. 1976. XIII - The development of the CIE 1976 (L* a* b*) uniform colour space and colour-difference formula. Journal of the Society of Dyers and Colourists 92, 9 (1976), 338--341.Google ScholarGoogle ScholarCross RefCross Ref
  26. Peter Morovič, Ján Morovič, Ingeborg Tastl, Melanie Gottwals, and Gary Dispoto. 2019. Co-optimization of color and mechanical properties by volumetric voxel control. Struct Multidisc Optim 60, 3 (Sept. 2019), 895--908. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering. Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020), 146:1--146:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019), 203:1--203:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Isabel Molina Orihuela and Mehran Ebrahimi. 2019. An Efficient Algorithm for Computing the Derivative of Mean Structural Similarity Index Measure. In Image Analysis and Recognition, Fakhri Karray, Aurélio Campilho, and Alfred Yu (Eds.). Springer International Publishing, Cham, 55--66.Google ScholarGoogle Scholar
  30. Marios Papas, Christian Regg, Wojciech Jarosz, Bernd Bickel, Philip Jackson, Wojciech Matusik, Steve Marschner, and Markus Gross. 2013. Fabricating translucent materials using continuous pigment mixtures. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Michal Piovarči, Michael Foshey, Vahid Babaei, Szymon Rusinkiewicz, Wojciech Matusik, and Piotr Didyk. 2020. Towards spatially varying gloss reproduction for 3D printing. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jens Preiss, Felipe Fernandes, and Philipp Urban. 2014. Color-image quality assessment: From prediction to optimization. IEEE Transactions on Image Processing 23, 3 (2014), 1366--1378.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Olivier Rouiller, Bernd Bickel, Jan Kautz, Wojciech Matusik, and Marc Alexa. 2013. 3D-printing spatially varying BRDFs. IEEE computer graphics and applications 33, 6 (2013), 48--57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Gaurav Sharma, Wencheng Wu, and Edul N Dalal. 2005. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur 30, 1 (2005), 21--30.Google ScholarGoogle Scholar
  35. Kfir Shem-Tov, Sai Praveen Bangaru, Anat Levin, and Ioannis Gkioulekas. 2020. Towards Reflectometry from Interreflections. In 2020 IEEE International Conference on Computational Photography (ICCP). IEEE, New York, NY, USA, 1--12. Google ScholarGoogle ScholarCross RefCross Ref
  36. Liang Shi, Vahid Babaei, Changil Kim, Michael Foshey, Yuanming Hu, Pitchaya Sitthi-Amorn, Szymon Rusinkiewicz, and Wojciech Matusik. 2018. Deep multispectral painting reproduction via multi-layer, custom-ink printing. ACM Trans. Graph. 37, 6 (Dec. 2018), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Denis Sumin, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Piotr Didyk, Bernd Bickel, Jaroslav Křivánek, Karol Myszkowski, and Tim Weyrich. 2019. Geometry-Aware Scattering Compensation for 3D Printing. ACM Transactions on Graphics (Proc. SIGGRAPH) 38, 4 (July 2019), 111:1--111:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Philipp Urban, Tejas Madan Tanksale, Alan Brunton, Bui Minh Vu, and Shigeki Nakauchi. 2019. Redefining A in RGBA: Towards a Standard for Graphical 3D Printing. ACM Trans. Graph. 38, 3 (June 2019), 21:1--21:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13, 4 (2004), 600--612.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zhou Wang, Eero P Simoncelli, and Alan C Bovik. 2003. Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Vol. 2. IEEE, New York, NY, USA, 1398--1402.Google ScholarGoogle ScholarCross RefCross Ref
  41. Douglas R Wyman, Michael S Patterson, and Brian C Wilson. 1989a. Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles. J. Comput. Phys. 81, 1 (1989), 137--150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Douglas R Wyman, Michael S Patterson, and Brian C Wilson. 1989b. Similarity relations for the interaction parameters in radiation transport. Applied optics 28, 24 (1989), 5243--5249.Google ScholarGoogle Scholar
  43. Bei Xiao, Bruce Walter, Ioannis Gkioulekas, Todd Zickler, Edward Adelson, and Kavita Bala. 2014. Looking against the light: How perception of translucency depends on lighting direction. Journal of vision 14, 3 (2014), 17--17.Google ScholarGoogle ScholarCross RefCross Ref
  44. Bei Xiao, Shuang Zhao, Ioannis Gkioulekas, Wenyan Bi, and Kavita Bala. 2020. Effect of geometric sharpness on translucent material perception. Journal of vision 20, 7 (2020), 10--10.Google ScholarGoogle ScholarCross RefCross Ref
  45. Wufeng Xue, Lei Zhang, Xuanqin Mou, and Alan C Bovik. 2013. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Transactions on Image Processing 23, 2 (2013), 684--695.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Transactions on Graphics (TOG) 38, 6 (Nov. 2019), 227:1--227:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. 2011. FSIM: A feature similarity index for image quality assessment. IEEE transactions on Image Processing 20, 8 (2011), 2378--2386.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The unreasonable effectiveness of deep features as a perceptual metric. In Proc. IEEE Conf. Comp. Vision & Pat. Rec. (CVPR). IEEE, New York, NY, USA, 586--595.Google ScholarGoogle ScholarCross RefCross Ref
  49. Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. 2016a. Loss functions for image restoration with neural networks. IEEE Transactions on computational imaging 3, 1 (2016), 47--57.Google ScholarGoogle ScholarCross RefCross Ref
  50. Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. 2014. High-order similarity relations in radiative transfer. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016b. Downsampling scattering parameters for rendering anisotropic media. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Quan Zheng, Vahid Babaei, Gordon Wetzstein, Hans-Peter Seidel, Matthias Zwicker, and Gurprit Singh. 2020. Neural Light Field 3D Printing. ACM Trans. Graph. 39, 6, Article 207 (Nov. 2020), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A gradient-based framework for 3D print appearance optimization

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 40, Issue 4
          August 2021
          2170 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3450626
          Issue’s Table of Contents

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 July 2021
          Published in tog Volume 40, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader