skip to main content
research-article

Highlight-aware two-stream network for single-image SVBRDF acquisition

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

This paper addresses the task of estimating spatially-varying reflectance (i.e., SVBRDF) from a single, casually captured image. Central to our method is a highlight-aware (HA) convolution operation and a two-stream neural network equipped with proper training losses. Our HA convolution, as a novel variant of standard (ST) convolution, directly modulates convolution kernels under the guidance of automatically learned masks representing potentially overexposed highlight regions. It helps to reduce the impact of strong specular highlights on diffuse components and at the same time, hallucinates plausible contents in saturated regions. Considering that variation of saturated pixels also contains important cues for inferring surface bumpiness and specular components, we design a two-stream network to extract features from two different branches stacked by HA convolutions and ST convolutions, respectively. These two groups of features are further fused in an attention-based manner to facilitate feature selection of each SVBRDF map. The whole network is trained end to end with a new perceptual adversarial loss which is particularly useful for enhancing the texture details. Such a design also allows the recovered material maps to be disentangled. We demonstrate through quantitative analysis and qualitative visualization that the proposed method is effective to recover clear SVBRDFs from a single casually captured image, and performs favorably against state-of-the-arts. Since we impose very few constraints on the capture process, even a non-expert user can create high-quality SVBRDFs that cater to many graphical applications.

Skip Supplemental Material Section

Supplemental Material

a123-guo.mp4
3450626.3459854.mp4

References

  1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. http://tensorflow.org/ Software available from tensorflow.org.Google ScholarGoogle Scholar
  2. Miika Aittala, Timo Aila, and Jaakko Lehtinen. 2016. Reflectance Modeling by Neural Texture Synthesis. ACM Trans. Graph. 35, 4, Article 65 (July 2016), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2013. Practical SVBRDF Capture in the Frequency Domain. ACM Trans. Graph. 32, 4, Article 110 (July 2013), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2015. Two-Shot SVBRDF Capture for Stationary Materials. ACM Trans. Graph. 34, 4, Article 110 (July 2015), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Louis-Philippe Asselin, Denis Laurendeau, and Jean-François Lalonde. 2020. Deep SVBRDF Estimation on Real Materials. arXiv e-prints, Article arXiv:2010.04143 (Oct. 2020), arXiv:2010.04143 pages.Google ScholarGoogle Scholar
  6. Seung-Hwan Baek, Daniel S. Jeon, Xin Tong, and Min H. Kim. 2018. Simultaneous Acquisition of Polarimetric SVBRDF and Normals. ACM Trans. Graph. 37, 6, Article 268 (Dec. 2018), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3 (Aug. 2009).Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Mark Boss, Varun Jampani, Kihwan Kim, Hendrik P.A. Lensch, and Jan Kautz. 2020. Two-Shot Spatially-Varying BRDF and Shape Estimation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  9. Tongbo Chen, Michael Goesele, and Hans-Peter Seidel. 2006. Mesostructure from Specularity. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Vol. 2. 1825--1832.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Robert L. Cook and Kenneth E. Torrance. 1981. A Reflectance Model for Computer Graphics. SIGGRAPH Comput. Graph. 15, 3 (Aug. 1981), 307--316.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink. 1999. Reflectance and Texture of Real-World Surfaces. ACM Trans. Graph. 18, 1 (Jan. 1999), 1--34.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09.Google ScholarGoogle Scholar
  13. Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien Bousseau. 2018. Single-Image SVBRDF Capture with a Rendering-Aware Deep Network. ACM Trans. Graph. 37, 4, Article 128 (July 2018), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien Bousseau. 2019. Flexible SVBRDF Capture with a Multi-Image Deep Network. Computer Graphics Forum 38, 4 (2019), 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  15. Valentin Deschaintre, George Drettakis, and Adrien Bousseau. 2020. Guided Fine-Tuning for Large-Scale Material Transfer. Computer Graphics Forum (2020).Google ScholarGoogle Scholar
  16. Yue Dong. 2019. Deep appearance modeling: A survey. Visual Informatics 3, 2 (2019), 59 -- 68.Google ScholarGoogle ScholarCross RefCross Ref
  17. Yue Dong, Guojun Chen, Pieter Peers, Jiawan Zhang, and Xin Tong. 2014. Appearance-from-Motion: Recovering Spatially Varying Surface Reflectance under Unknown Lighting. ACM Trans. Graph. 33, 6, Article 193 (Nov. 2014), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yue Dong, Xin Tong, Fabio Pellacini, and Baining Guo. 2011. AppGen: Interactive Material Modeling from a Single Image. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Yue Dong, Jiaping Wang, Xin Tong, John Snyder, Yanxiang Lan, Moshe Ben-Ezra, and Baining Guo. 2010. Manifold Bootstrapping for SVBRDF Capture. In ACM SIGGRAPH 2010 Papers (Los Angeles, California) (SIGGRAPH '10). Association for Computing Machinery, New York, NY, USA, Article 98, 10 pages.Google ScholarGoogle Scholar
  20. Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep Inverse Rendering for High-Resolution SVBRDF Estimation from an Arbitrary Number of Images. ACM Trans. Graph. 38, 4, Article 134 (July 2019), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Abhijeet Ghosh, Tongbo Chen, Pieter Peers, Cyrus A. Wilson, and Paul Debevec. 2010. Circularly Polarized Spherical Illumination Reflectometry. ACM Trans. Graph. 29, 6, Article 162 (Dec. 2010), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Abhijeet Ghosh, Tim Hawkins, Pieter Peers, Sune Frederiksen, and Paul Debevec. 2008. Practical Modeling and Acquisition of Layered Facial Reflectance. ACM Trans. Graph. 27, 5, Article 139 (Dec. 2008), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz. 2010. Shape and Spatially-Varying BRDFs from Photometric Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 6 (2010), 1060--1071. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger (Eds.), Vol. 27. Curran Associates, Inc., 2672--2680.Google ScholarGoogle Scholar
  25. D. Guarnera, G.C. Guarnera, A. Ghosh, C. Denk, and M. Glencross. 2016. BRDF Representation and Acquisition. Computer Graphics Forum 35, 2 (2016), 625--650.Google ScholarGoogle Scholar
  26. Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang Zhao. 2020. MaterialGAN: Reflectance Capture Using a Generative SVBRDF Model. ACM Trans. Graph. 39, 6, Article 254 (Nov. 2020), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Hyunho Ha, Seung-Hwan Baek, Giljoo Nam, and Min H. Kim. 2020. Progressive Acquisition of SVBRDF and Shape in Motion. Computer Graphics Forum 39, 6 (2020), 480--495.Google ScholarGoogle ScholarCross RefCross Ref
  28. G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the Dimensionality of Data with Neural Networks. Science 313, 5786 (2006), 504--507.Google ScholarGoogle Scholar
  29. Michael Holroyd, Jason Lawrence, and Todd Zickler. 2010. A Coaxial Optical Scanner for Synchronous Acquisition of 3D Geometry and Surface Reflectance. In ACM SIGGRAPH 2010 Papers (Los Angeles, California) (SIGGRAPH '10). Association for Computing Machinery, New York, NY, USA, Article 99, 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Johannes Kopf. 2014. Image Completion Using Planar Structure Guidance. ACM Trans. Graph. 33, 4, Article 129 (July 2014), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhuo Hui, Kalyan Sunkavalli, Joon-Young Lee, Sunil Hadap, Jian Wang, and Aswin C. Sankaranarayanan. 2017. Reflectance Capture Using Univariate Sampling of BRDFs. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle Scholar
  32. Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally and Locally Consistent Image Completion. ACM Trans. Graph. 36, 4, Article 107 (July 2017), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kaizhang Kang, Zimin Chen, Jiaping Wang, Kun Zhou, and Hongzhi Wu. 2018. Efficient Reflectance Capture Using an Autoencoder. ACM Trans. Graph. 37, 4, Article 127 (July 2018), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kaizhang Kang, Cihui Xie, Chengan He, Mingqi Yi, Minyi Gu, Zimin Chen, Kun Zhou, and Hongzhi Wu. 2019. Learning Efficient Illumination Multiplexing for Joint Capture of Reflectance and Shape. ACM Trans. Graph. 38, 6, Article 165 (Nov. 2019), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2019. Analyzing and Improving the Image Quality of StyleGAN. CoRR abs/1912.04958 (2019). http://arxiv.org/abs/1912.04958Google ScholarGoogle Scholar
  36. Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2015).Google ScholarGoogle Scholar
  37. Jason Lawrence, Aner Ben-Artzi, Christopher DeCoro, Wojciech Matusik, Hanspeter Pfister, Ravi Ramamoorthi, and Szymon Rusinkiewicz. 2006. Inverse Shade Trees for Non-Parametric Material Representation and Editing. In ACM SIGGRAPH 2006 Papers (Boston, Massachusetts) (SIGGRAPH '06). Association for Computing Machinery, New York, NY, USA, 735--745.Google ScholarGoogle Scholar
  38. Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling Surface Appearance from a Single Photograph Using Self-Augmented Convolutional Neural Networks. ACM Trans. Graph. 36, 4, Article 45 (July 2017), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker. 2020. Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and svbrdf from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2475--2484.Google ScholarGoogle ScholarCross RefCross Ref
  40. Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. 2018a. Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Image. In Computer Vision - ECCV 2018. Springer International Publishing, Cham, 74--90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker. 2018b. Learning to Reconstruct Shape and Spatially-Varying Reflectance from a Single Image. ACM Trans. Graph. 37, 6, Article 269 (Dec. 2018), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Y. Lin, P. Peers, and A. Ghosh. 2019. On-Site Example-Based Material Appearance Acquisition. Computer Graphics Forum 38, 4 (2019), 15--25.Google ScholarGoogle ScholarCross RefCross Ref
  43. Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. 2018. Image Inpainting for Irregular Holes Using Partial Convolutions. In Proceedings of the European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Hongyu Liu, Bin Jiang, Yibing Song, Wei Huang, and Chao Yang. 2020. Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations. In Computer Vision - ECCV 2020. Springer International Publishing, Cham, 725--741.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable Renderer for Image-Based 3D Reasoning. In The IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  46. Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. 2013. Rectifier nonlinearities improve neural network acoustic models. In ICML Workshop on Deep Learning for Audio, Speech and Language Processing.Google ScholarGoogle Scholar
  47. Giljoo Nam, Joo Ho Lee, Diego Gutierrez, and Min H. Kim. 2018. Practical SVBRDF Acquisition of 3D Objects with Unstructured Flash Photography. ACM Trans. Graph. 37, 6, Article 267 (Dec. 2018), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Giljoo Nam, Joo Ho Lee, Hongzhi Wu, Diego Gutierrez, and Min H. Kim. 2016. Simultaneous Acquisition of Microscale Reflectance and Normals. ACM Trans. Graph. 35, 6, Article 185 (Nov. 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Z. Qureshi, and Mehran Ebrahimi. 2019. EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning. CoRR abs/1901.00212 (2019).Google ScholarGoogle Scholar
  50. F.E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg, and T. Limperis. 1977. Geometrical considerations and nomenclature for reflectance. Technical Report. NBS Monograph 160, U.S. Dept. of Commerce.Google ScholarGoogle Scholar
  51. Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei Efros. 2016. Context Encoders: Feature Learning by Inpainting.Google ScholarGoogle Scholar
  52. Peiran Ren, Jiaping Wang, John Snyder, Xin Tong, and Baining Guo. 2011. Pocket Reflectometry. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH '11). Association for Computing Machinery, New York, NY, USA, Article 45, 10 pages.Google ScholarGoogle Scholar
  53. Yurui Ren, Xiaoming Yu, Ruonan Zhang, Thomas H. Li, Shan Liu, and Ge Li. 2019. StructureFlow: Image Inpainting via Structure-Aware Appearance Flow. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  54. J. Riviere, P. Peers, and A. Ghosh. 2016. Mobile Surface Reflectometry. Computer Graphics Forum 35, 1 (2016), 191--202.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Jérémy Riviere, Ilya Reshetouski, Luka Filipi, and Abhijeet Ghosh. 2017. Polarization Imaging Reflectometry in the Wild. ACM Trans. Graph. 36, 6, Article 206 (Nov. 2017), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Springer International Publishing, Cham, 234--241.Google ScholarGoogle ScholarCross RefCross Ref
  57. Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR 2015.Google ScholarGoogle Scholar
  58. Borom Tunwattanapong, Graham Fyffe, Paul Graham, Jay Busch, Xueming Yu, Abhijeet Ghosh, and Paul Debevec. 2013. Acquiring Reflectance and Shape from Continuous Spherical Harmonic Illumination. ACM Trans. Graph. 32, 4, Article 109 (July 2013), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. 2016. Instance Normalization: The Missing Ingredient for Fast Stylization. CoRR abs/1607.08022 (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet Models for Refraction through Rough Surfaces. In Rendering Techniques, Jan Kautz and Sumanta Pattanaik (Eds.). The Eurographics Association.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Chun-Po Wang, Noah Snavely, and Steve Marschner. 2011. Estimating Dual-Scale Properties of Glossy Surfaces from Step-Edge Lighting. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Jiaping Wang, Shuang Zhao, Xin Tong, John Snyder, and Baining Guo. 2008. Modeling Anisotropic Surface Reflectance with Example-Based Microfacet Synthesis. In ACM SIGGRAPH 2008 Papers (Los Angeles, California) (SIGGRAPH '08). Association for Computing Machinery, New York, NY, USA, Article 41, 9 pages.Google ScholarGoogle Scholar
  63. Yi Wang, Ying-Cong Chen, Xin Tao, and Jiaya Jia. 2020. VCNet: A Robust Approach to Blind Image Inpainting. arXiv preprint arXiv:2003.06816 (2020).Google ScholarGoogle Scholar
  64. Tim Weyrich, Jason Lawrence, Hendrik Lensch, Szymon Rusinkiewicz, and Todd Zickler. 2008. Principles of Appearance Acquisition and Representation. In ACM SIGGRAPH 2008 Classes (Los Angeles, California) (SIGGRAPH '08). Association for Computing Machinery, New York, NY, USA, Article 80, 119 pages.Google ScholarGoogle Scholar
  65. Hongzhi Wu, Zhaotian Wang, and Kun Zhou. 2016. Simultaneous Localization and Appearance Estimation with a Consumer RGB-D Camera. IEEE Transactions on Visualization and Computer Graphics 22, 8 (2016), 2012--2023. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Wei Xiong, Jiahui Yu, Zhe Lin, Jimei Yang, Xin Lu, Connelly Barnes, and Jiebo Luo. 2019. Foreground-Aware Image Inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  67. Z. Xu and J. Sun. 2010. Image Inpainting by Patch Propagation Using Patch Sparsity. IEEE Transactions on Image Processing 19, 5 (2010), 1153--1165.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Wenjie Ye, Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2018. Single Image Surface Appearance Modeling with Self-augmented CNNs and Inexact Supervision. Computer Graphics Forum 37, 7 (2018), 201--211.Google ScholarGoogle ScholarCross RefCross Ref
  69. Zili Yi, Qiang Tang, Shekoofeh Azizi, Daesik Jang, and Zhan Xu. 2020. Contextual Residual Aggregation for Ultra High-Resolution Image Inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  70. Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. 2018. Generative Image Inpainting With Contextual Attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  71. Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. 2019. Free-Form Image Inpainting With Gated Convolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).Google ScholarGoogle Scholar
  72. Jiyang Yu, Zexiang Xu, Matteo Mannino, Henrik Wann Jensen, and Ravi Ramamoorthi. 2016. Sparse Sampling for Image-Based SVBRDF Acquisition. In Workshop on Material Appearance Modeling, Reinhard Klein and Holly Rushmeier (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  73. Xilong Zhou and Nima Khademi Kalantari. 2021. Adversarial Single-Image SVBRDF Estimation with Hybrid Training. Computer Graphics Forum (2021).Google ScholarGoogle Scholar
  74. Zhiming Zhou, Guojun Chen, Yue Dong, David Wipf, Yong Yu, John Snyder, and Xin Tong. 2016. Sparse-as-Possible SVBRDF Acquisition. ACM Trans. Graph. 35, 6, Article 189 (Nov. 2016), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Highlight-aware two-stream network for single-image SVBRDF acquisition

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader