skip to main content
research-article
Public Access

Thin-film smoothed particle hydrodynamics fluid

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We propose a particle-based method to simulate thin-film fluid that jointly facilitates aggressive surface deformation and vigorous tangential flows. We build our dynamics model from the surface tension driven Navier-Stokes equation with the dimensionality reduced using the asymptotic lubrication theory and customize a set of differential operators based on the weakly compressible Smoothed Particle Hydrodynamics (SPH) for evolving pointset surfaces. The key insight is that the compressible nature of SPH, which is unfavorable in its typical usage, is helpful in our application to co-evolve the thickness, calculate the surface tension, and enforce the fluid incompressibility on a thin film. In this way, we are able to two-way couple the surface deformation with the in-plane flows in a physically based manner. We can simulate complex vortical swirls, fingering effects due to Rayleigh-Taylor instability, capillary waves, Newton's interference fringes, and the Marangoni effect on liberally deforming surfaces by presenting both realistic visual results and numerical validations. The particle-based nature of our system also enables it to conveniently handle topology changes and codimension transitions, allowing us to marry the thin-film simulation with a wide gamut of 3D phenomena, such as pinch-off of unstable catenoids, dripping under gravity, merging of droplets, as well as bubble rupture.

Skip Supplemental Material Section

Supplemental Material

3450626.3459864.mp4
a110-wang.mp4

References

  1. Mridul Aanjaneya, Saket Patkar, and Ronald Fedkiw. 2013. A monolithic mass tracking formulation for bubbles in incompressible flow. J. Comput. Phys. 247 (2013), 17--61.Google ScholarGoogle ScholarCross RefCross Ref
  2. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Transactions on Graphics (TOG) 32, 6 (2013), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A Albadawi, DB Donoghue, AJ Robinson, DB Murray, and YMC Delauré. 2013. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. International Journal of Multiphase Flow 53 (2013), 11--28.Google ScholarGoogle ScholarCross RefCross Ref
  4. Ryoichi Ando and Reiji Tsuruno. 2011. A particle-based method for preserving fluid sheets. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation. 7--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Stefan Auer, Colin B Macdonald, Marc Treib, Jens Schneider, and Rüdiger Westermann. 2012. Real-time fluid effects on surfaces using the closest point method. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1909--1923.Google ScholarGoogle Scholar
  6. Stefan Auer and Rüdiger Westermann. 2013. A Semi-Lagrangian Closest Point Method for Deforming Surfaces. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 207--214.Google ScholarGoogle Scholar
  7. Omri Azencot, Orestis Vantzos, Max Wardetzky, Martin Rumpf, and Mirela Ben-Chen. 2015a. Functional thin films on surfaces. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 137--146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Omri Azencot, Orestis Vantzos, Max Wardetzky, Martin Rumpf, and Mirela Ben-Chen. 2015b. Functional thin films on surfaces. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 137--146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Omri Azencot, Steffen Weißmann, Maks Ovsjanikov, Max Wardetzky, and Mirela BenChen. 2014. Functional fluids on surfaces. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 237--246.Google ScholarGoogle Scholar
  10. Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and Matthias Teschner. 2018. Pressure boundaries for implicit incompressible SPH. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete viscous sheets. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. 209--217.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Laurent Belcour and Pascal Barla. 2017. A practical extension to microfacet theory for the modeling of varying iridescence. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Mikhail Belkin and Partha Niyogi. 2008. Towards a theoretical foundation for Laplacian-based manifold methods. J. Comput. System Sci. 74, 8 (2008), 1289--1308.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mikhail Belkin, Jian Sun, and Yusu Wang. 2009. Constructing Laplace operator from point clouds in R d. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 1031--1040.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jan Bender and Dan Koschier. 2016. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3 (2016), 1193--1206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete viscous threads. ACM Transactions on graphics (TOG) 29, 4 (2010), 1--10.Google ScholarGoogle Scholar
  18. Robert Bridson. 2015. Fluid simulation for computer graphics. CRC press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Brookshaw. 1985. A Method of Calculating Radiative Heat Diffusion in Particle Simulations. Publications of the Astronomical Society of Australia 6, 2 (1985), 207--210.Google ScholarGoogle ScholarCross RefCross Ref
  20. Ka Chun Cheung, Leevan Ling, and Steven J Ruuth. 2015. A localized meshless method for diffusion on folded surfaces. J. Comput. Phys. 297 (2015), 194--206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jean-Marc Chomaz. 2001. The dynamics of a viscous soap film with soluble surfactant. Journal of Fluid Mechanics 442 (2001), 387--409.Google ScholarGoogle ScholarCross RefCross Ref
  22. Jens Cornelis, Markus Ihmsen, Andreas Peer, and Matthias Teschner. 2014. IISPH-FLIP for incompressible fluids. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 255--262.Google ScholarGoogle Scholar
  23. Y Couder, JM Chomaz, and M Rabaud. 1989. On the hydrodynamics of soap films. Physica D: Nonlinear Phenomena 37, 1-3 (1989), 384--405.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double bubbles sans toil and trouble: Discrete circulation-preserving vortex sheets for soap films and foams. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C Gaulon, C Derec, T Combriat, P Marmottant, and F Elias. 2017. Sound and Vision: Visualization of music with a soap film, and the physics behind it. (2017).Google ScholarGoogle Scholar
  26. Robert A Gingold and Joseph J Monaghan. 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society 181, 3 (1977), 375--389.Google ScholarGoogle Scholar
  27. Christoph Gissler, Andreas Henne, Stefan Band, Andreas Peer, and Matthias Teschner. 2020. An implicit compressible SPH solver for snow simulation. ACM Transactions on Graphics (TOG) 39, 4 (2020), 36--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019. Interlinked SPH pressure solvers for strong fluid-rigid coupling. ACM Transactions on Graphics (TOG) 38, 1 (2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Andrew Glassner. 2000. Soap bubbles: part 2. IEEE Annals of the History of Computing 20, 06 (2000), 99--109.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. David J Hill and Ronald D Henderson. 2016. Efficient fluid simulation on the surface of a sphere. ACM Transactions on Graphics (TOG) 35, 2 (2016), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Jeong-Mo Hong and Chang-Hun Kim. 2003. Animation of bubbles in liquid. In Computer Graphics Forum, Vol. 22. Wiley Online Library, 253--262.Google ScholarGoogle Scholar
  32. Jeong-Mo Hong and Chang-Hun Kim. 2005. Discontinuous fluids. ACM Transactions on Graphics (TOG) 24, 3 (2005), 915--920.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Libo Huang, Torsten Hädrich, and Dominik L Michels. 2019. On the accurate large-scale simulation of ferrofluids. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Weizhen Huang, Julian Iseringhausen, Tom Kneiphof, Ziyin Qu, Chenfanfu Jiang, and Matthias B. Hullin. 2020. Chemomechanical Simulation of Soap Film Flow on Spherical Bubbles. ACM Transactions on Graphics 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2013. Implicit incompressible SPH. IEEE transactions on visualization and computer graphics 20, 3 (2013), 426--435.Google ScholarGoogle Scholar
  36. Sadashige Ishida, Peter Synak, Fumiya Narita, Toshiya Hachisuka, and Chris Wojtan. 2020. A Model for Soap Film Dynamics with Evolving Thickness. ACM Transactions on Graphics 39, 4 (2020), 31:1--31:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and Toshiya Hachisuka. 2017. A hyperbolic geometric flow for evolving films and foams. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Kei Iwasaki, Keichi Matsuzawa, and Tomoyuki Nishita. 2004. Real-time rendering of soap bubbles taking into account light interference. In Proceedings Computer Graphics International, 2004. IEEE, 344--348.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Dariusz Jaszkowski and Janusz Rzeszut. 2003. Interference colours of soap bubbles. The Visual Computer 19, 4 (2003), 252--270.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015. Blue noise sampling using an SPH-based method. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Myungjoo Kang, Barry Merriman, and Stanley Osher. 2008. Numerical simulations for the motion of soap bubbles using level set methods. Computers & fluids 37, 5 (2008), 524--535.Google ScholarGoogle Scholar
  42. Richard Keiser, Bart Adams, Philip Dutré, Leonidas J Guibas, and Mark Pauly. 2006. Multiresolution particle-based fluids. Technical Report/ETH Zurich, Department of Computer Science 520 (2006).Google ScholarGoogle Scholar
  43. Namjung Kim, SaeWoon Oh, and Kyoungju Park. 2015. Giant soap bubble creation model. Computer Animation and Virtual Worlds 26, 3-4 (2015), 445--455.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest point turbulence for liquid surfaces. ACM Transactions on Graphics (TOG) 32, 2 (2013), 15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. M. Kness. 2008. ColorPy-A Python package for handling physical descriptions of color and light spectra. (2008).Google ScholarGoogle Scholar
  46. Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids. In Eurographics 2019 - Tutorials, Wenzel Jakob and Enrico Puppo (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  47. Rongjie Lai, Jiang Liang, and Hongkai Zhao. 2013. A local mesh method for solving PDEs on point clouds. Inverse Problems & Imaging 7, 3 (2013).Google ScholarGoogle Scholar
  48. Peter Lancaster and Kes Salkauskas. 1981. Surfaces generated by moving least squares methods. Mathematics of computation 37, 155 (1981), 141--158.Google ScholarGoogle Scholar
  49. David Levin. 1998. The approximation power of moving least-squares. Mathematics of computation 67, 224 (1998), 1517--1531.Google ScholarGoogle Scholar
  50. MB Liu and GR Liu. 2010. Smoothed particle hydrodynamics (SPH): an overview and recent developments. Archives of computational methods in engineering 17, 1 (2010), 25--76.Google ScholarGoogle Scholar
  51. Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics 14, 4 (2008), 797--804.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Joe J Monaghan. 1992. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics 30, 1 (1992), 543--574.Google ScholarGoogle Scholar
  53. Joseph J Monaghan and John C Lattanzio. 1985. A refined particle method for astro-physical problems. Astronomy and astrophysics 149 (1985), 135--143.Google ScholarGoogle Scholar
  54. Dieter Morgenroth, Stefan Reinhardt, Daniel Weiskopf, and Bernhard Eberhardt. 2020. Efficient 2D simulation on moving 3D surfaces. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 27--38.Google ScholarGoogle Scholar
  55. Joseph P Morris, Patrick J Fox, and Yi Zhu. 1997. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 1 (1997), 214--226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Matthias Müller, David Charypar, and Markus H Gross. 2003. Particle-based fluid simulation for interactive applications.. In Symposium on Computer animation. 154--159.Google ScholarGoogle Scholar
  57. Metin Muradoglu and Gretar Tryggvason. 2008. A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 4 (2008), 2238--2262.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Andrew Nealen. 2004. An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation. URL: http://www.nealen.com/projects 130, 150 (2004), 25.Google ScholarGoogle Scholar
  59. Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2020. A level-set method for magnetic substance simulation. ACM Transactions on Graphics (TOG) 39, 4 (2020), 29--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M Omang, Steinar Børve, and Jan Trulsen. 2006. SPH in spherical and cylindrical coordinates. J. Comput. Phys. 213, 1 (2006), 391--412.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 105--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2018. An implicit SPH formulation for incompressible linearly elastic solids. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 135--148.Google ScholarGoogle Scholar
  63. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit viscosity formulation for SPH fluids. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Fabiano Petronetto, Afonso Paiva, Elias S Helou, DE Stewart, and Luis Gustavo Nonato. 2013. Mesh-Free Discrete Laplace-Beltrami Operator. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 214--226.Google ScholarGoogle Scholar
  65. Daniel J Price. 2012. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 3 (2012), 759--794.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Steven J Ruuth and Barry Merriman. 2008. A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227, 3 (2008), 1943--1961.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Robert Saye. 2014. High-order methods for computing distances to implicitly defined surfaces. Communications in Applied Mathematics and Computational Science 9, 1 (2014), 107--141.Google ScholarGoogle ScholarCross RefCross Ref
  68. Robert I Saye and James A Sethian. 2013. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. Science 340, 6133 (2013), 720--724.Google ScholarGoogle Scholar
  69. Hagit Schechter and Robert Bridson. 2012. Ghost SPH for animating water. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Frank Schmidt. 2014. The laplace-beltrami-operator on riemannian manifolds. In Seminar Shape Analysis.Google ScholarGoogle Scholar
  71. Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for smoke, water and explosions. In ACM SIGGRAPH 2005 Papers. 910--914.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Brian E Smits and Gary W Meyer. 1992. Newton's colors: simulating interference phenomena in realistic image synthesis. In Photorealism in Computer Graphics. Springer, 185--194.Google ScholarGoogle Scholar
  73. Barbara Solenthaler, Peter Bucher, Nuttapong Chentanez, Matthias Müller, and Markus Gross. 2011. SPH based shallow water simulation. (2011).Google ScholarGoogle Scholar
  74. Barbara Solenthaler and Renato Pajarola. 2008. Density contrast SPH interfaces. (2008).Google ScholarGoogle Scholar
  75. Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. In ACM SIGGRAPH 2009 papers. 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Jos Stam. 2003. Flows on surfaces of arbitrary topology. ACM Transactions On Graphics (TOG) 22, 3 (2003), 724--731.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Alexandre M Tartakovsky and Paul Meakin. 2005. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability. J. Comput. Phys. 207, 2 (2005), 610--624.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Sasan Tavakkol, Amir Reza Zarrati, and Mahdiyar Khanpour. 2017. Curvilinear smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids 83, 2 (2017), 115--131.Google ScholarGoogle ScholarCross RefCross Ref
  79. Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. 2018. Real-time viscous thin films. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional surface tension flow using moving-least-squares particles. ACM Transactions on Graphics (TOG) 39, 4 (2020), 42--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Jian Jun Xu, Zhilin Li, John Lowengrub, and Hongkai Zhao. 2006. A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212, 2 (2006), 590--616.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Sheng Yang, Xiaowei He, Huamin Wang, Sheng Li, Guoping Wang, Enhua Wu, and Kun Zhou. 2016. Enriching SPH simulation by approximate capillary waves.. In Symposium on Computer Animation. 29--36.Google ScholarGoogle Scholar
  83. Tao Yang, Jian Chang, Ming C Lin, Ralph R Martin, Jian J Zhang, and Shi-Min Hu. 2017a. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Tao Yang, Ralph R Martin, Ming C Lin, Jian Chang, and Shi-Min Hu. 2017b. Pairwise force SPH model for real-time multi-interaction applications. IEEE transactions on visualization and computer graphics 23, 10 (2017), 2235--2247.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Jong-Chul Yoon, Hyeong Ryeol Kam, Jeong-Mo Hong, Shin Jin Kang, and Chang-Hun Kim. 2009. Procedural synthesis using vortex particle method for fluid simulation. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 1853--1859.Google ScholarGoogle Scholar
  86. Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2009. Simulation of bubbles. Graphical Models 71, 6 (2009), 229--239.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codimensional surface tension flow on simplicial complexes. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Bo Zhu, Xubo Yang, and Ye Fan. 2010. Creating and preserving vortical details in sph fluid. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 2207--2214.Google ScholarGoogle Scholar

Index Terms

  1. Thin-film smoothed particle hydrodynamics fluid

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader