skip to main content
research-article

Incompressible flow simulation on vortex segment clouds

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We propose a novel Lagrangian geometric representation using segment clouds to simulate incompressible fluid exhibiting strong anisotropic vortical features. The central component of our approach is a cloud of discrete segments enhanced by a set of local segment reseeding operations to facilitate both the geometrical evolution and the topological updates of vortical flow. We build a vortex dynamics solver with the support for dynamic solid boundaries based on discrete segment primitives. We demonstrate the efficacy of our approach by simulating a broad range of challenging flow phenomena, such as reconnection of non-closed vortex tubes and vortex shedding behind a rotating object.

Skip Supplemental Material Section

Supplemental Material

a98-xiong.mp4
3450626.3459865.mp4

References

  1. A. S. Almgren, T. Buttke, and P. Colella. 1994. A fast adaptive vortex method in three dimensions. J. Comput. Phys. 113 (1994), 177--200.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE T. Vis. Comput. Gr. 18 (2012), 1202--1214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Angelidis. 2017. Multi-scale vorticle fluids. ACM Trans. Graph. 36 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Angelidis and F. Neyret. 2005. Simulation of smoke based on vortex filament primitives. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 87--96.Google ScholarGoogle Scholar
  5. H. Aref and E. Flinchem. 1985. Dynamics of a vortex filament in a shear flow. J. Fluid Mech. 148 (1985), 477--497.Google ScholarGoogle ScholarCross RefCross Ref
  6. G. Barill, N. G. Dickson, R. Schmidt, D. I. W. Levin, and A. Jacobson. 2018. Fast winding numbers for soups and clouds. ACM Trans. Graph. 37 (2018), 43.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Barnat and N. S. Pollard. 2012. Smoke sheets for graph-structured vortex filaments. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 77--86.Google ScholarGoogle Scholar
  8. G. Beardsell, L. Dufresne, and G. Dumas. 2016a. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations. Phys. Fluids 28 (2016), 095103.Google ScholarGoogle ScholarCross RefCross Ref
  9. G. Beardsell, L. Dufresne, and G. Dumas. 2016b. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations. Phys. Fluids 28 (2016), 095103.Google ScholarGoogle ScholarCross RefCross Ref
  10. P. S. Bernard. 2009. Vortex filament simulation of the turbulent coflowing jet. Phys. Fluids 21 (2009), 025107.Google ScholarGoogle ScholarCross RefCross Ref
  11. T. Brochu, T. Keeler, and R. Bridson. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 87--95.Google ScholarGoogle Scholar
  12. A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36 (2017), 142.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. 2016. Schrödinger's smoke. ACM Trans. Graph. 35 (2016), 77.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. P. Choquin and S. Huberson. 1990. Computational experiments on interactions between numerical and physical instabilities. Int. J. Numer. Meth. Fl. 11 (1990), 541--553.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. J. Chorin. 1973. Numerical study of slightly viscous flow. J. Fluid Mech. 57 (1973), 785--796.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. J. Chorin. 1990. Hairpin removal in vortex interactions. J. Comput. Phys. 91 (1990), 1--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. J. Chorin. 1993. Hairpin removal in vortex interactions II. J. Comput. Phys. 107 (1993), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Cortez. 1996. An impulse-based approximation of fluid motion due to boundary forces. J. Comput. Phys. 123, 2 (1996), 341--353.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. H. Cottet and P. Koumoutsakos. 2000. Vortex Methods: Theory and Practice. Cambridge University Press.Google ScholarGoogle Scholar
  20. S. Eberhardt, S. Weissmann, U. Pinkall, and N. Thuerey. 2017. Hierarchical vorticity skeletons. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 6.Google ScholarGoogle Scholar
  21. L. L. Erickson. 1990. Panel methods: An introduction. Vol. 2995. National Aeronautics and Space Administration.Google ScholarGoogle Scholar
  22. V. M. Fernandez, N. J. Zabusky, P. Liu, S. Bhatt, and A. Gerasoulis. 1996. Filament surgery and temporal grid adaptivity extensions to a parallel tree code for simulation and diagnosis in 3D vortex dynamics. In ESAIM: Proceedings, Vol. 1. 197--211.Google ScholarGoogle ScholarCross RefCross Ref
  23. F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. 2016. Narrow band fLIP for liquid simulations. In Computer Graphics Forum, Vol. 35. 225--232.Google ScholarGoogle ScholarCross RefCross Ref
  24. L. Greengard and V. Rokhlin. 1987. A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987), 325--348.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. O. Hald. 1979. Convergence of vortex methods for Euler's equations. II. SIAM J. Numer. Anal. 16 (1979), 726--755.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. O. Hald and V. M. Del Prete. 1978. Convergence of vortex methods for Euler's equations. Math. Comput. 32 (1978), 791--809.Google ScholarGoogle Scholar
  27. H. Hasimoto. 1972. A soliton on a vortex filament. J. Fluid Mech. 854 (1972), 477--485.Google ScholarGoogle ScholarCross RefCross Ref
  28. E. Hopfinger, F. Browand, and Y. Gagne. 1982. Turbulence and waves in a rotating tank. J. Fluid Mech. 125 (1982), 505--534.Google ScholarGoogle ScholarCross RefCross Ref
  29. L. Hu, M. Chen, P. X. Liu, and S. Xu. 2020. A vortex method of 3D smoke simulation for virtual surgery. Comput. Meth. Prog. Bio. 198 (2020), 105813.Google ScholarGoogle ScholarCross RefCross Ref
  30. Y. Hu, X. Zhang, M. Gao, and C. Jiang. 2019. On hybrid lagrangian-eulerian simulation methods: practical notes and high-performance aspects. In ACM SIGGRAPH 2019 Courses. 1--246.Google ScholarGoogle Scholar
  31. S. C. Hung and R. B. Kinney. 1988. Unsteady viscous flow over a grooved wall: A comparison of two numerical methods. Int. J. Numer. Meth. Fl. 8 (1988), 1403--1437.Google ScholarGoogle ScholarCross RefCross Ref
  32. S. Kida and M. Takaoka. 1994. Vortex reconnection. Annu. Rev. Fluid Mech. 26 (1994), 169--189.Google ScholarGoogle ScholarCross RefCross Ref
  33. D. Kleckner, L. H. Kauffman, and W. T. M. Irvine. 2016. How superfluid vortex knots untie. Nat. Phys. 12 (2016), 650--655.Google ScholarGoogle ScholarCross RefCross Ref
  34. P. Koumoutsakos. 1993. Direct numerical simulations of unsteady separated flows using vortex methods. Ph.D. Dissertation.Google ScholarGoogle Scholar
  35. R. Krasny. 1988. Numerical simulation of vortex sheet evolution. Fluid Dyn. Res. 3 (1988), 93--97.Google ScholarGoogle ScholarCross RefCross Ref
  36. K. Kuzmina and I. Marchevsky. 2021. Flow simulation around circular cylinder at low Reynolds numbers using vortex particle method. In Journal of Physics: Conference Series, Vol. 1715. 012067.Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Leibovich. 1978. The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10 (1978), 221--246.Google ScholarGoogle ScholarCross RefCross Ref
  38. M. J. Lighthill. 1963. Introduction: Boundary Layer Theory: Laminar Boundary Layer. Oxford University Press.Google ScholarGoogle Scholar
  39. T. Loiseleux, J. M. Chomaz, and P. Huerre. 1998. The effect of swirl on jets and wakes: Linear instability of the Rankine vortex with axial flow. Phys. Fluids 10 (1998), 1120--1134.Google ScholarGoogle ScholarCross RefCross Ref
  40. Y. M. Marzouk and A. F. Ghoniem. 2007. Vorticity structure and evolution in a transverse jet. J. Fluid Mech. 575 (2007), 267--305.Google ScholarGoogle ScholarCross RefCross Ref
  41. A. G. McKenzie. 2007. HOLA: a high-order Lie advection of discrete differential forms with applications in Fluid Dynamics. Ph.D. Dissertation. California Institute of Technology.Google ScholarGoogle Scholar
  42. R. Mehra, N. Raghuvanshi, L. Antani, A. Chandak, S. Curtis, and D. Manocha. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans. Graph. 32 (2013), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2019. On bubble rings and ink chandeliers. ACM Trans. Graph. 38, 4 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. I. Park and M. J. Kim. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 261--270.Google ScholarGoogle Scholar
  45. F. Pepin. 1990. Simulation of the flow past an impulsively started cylinder using a discrete vortex method. Ph.D. Dissertation.Google ScholarGoogle Scholar
  46. T. Pfaff, N. Thuerey, and M. Gross. 2012a. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31 (2012).Google ScholarGoogle Scholar
  47. T. Pfaff, N. Thuerey, and M. Gross. 2012b. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31 (2012), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen. 2019. Efficient and conservative fluids using bidirectional mapping. ACM Trans. Graph. 38, 4 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. L. Rosenhead. 1931. The formation of vortices from a surface of discontinuity. Proc. Roy. Soc. A 134 (1931), 170--192.Google ScholarGoogle Scholar
  50. P. Roushan and X. L. Wu. 2005. Universal wake structures of Kármán vortex streets in two-dimensional flows. Phys. Fluids 17 (2005), 073601.Google ScholarGoogle ScholarCross RefCross Ref
  51. M. W. Scheeler, D. Kleckner, D. Proment, G. L. Kindlmann, and W. T. M. Irvine. 2014. Helicity conservation by flow across scales in reconnecting vortex links and knots. Proc. Natl. Acad. Sci. 111 (2014), 15350--15355.Google ScholarGoogle ScholarCross RefCross Ref
  52. C. Schreck, C. Hafner, and C. Wojtan. 2019. Fundamental solutions for water wave animation. ACM Trans. Graph. 38 (2019), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Z.-S. She, E. Jackson, and S. A. Orszag. 1990. Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344 (1990), 226--228.Google ScholarGoogle ScholarCross RefCross Ref
  54. H. Takami. 1964. A numerical experiment with disecrete vortex approximation, with reference to the rolling up of a vortex sheet. Technical Report. Stanford Univ. Calif.Google ScholarGoogle Scholar
  55. W. M. van Rees, F. Hussain, and P. Koumoutsakos. 2012. Vortex tube reconnection at Re = 104. Phys. Fluids 24 (2012), 075105.Google ScholarGoogle ScholarCross RefCross Ref
  56. M. Vines, B. Houston, J. Lang, and W. Lee. 2013. Vortical inviscid flows with two-way solid-fluid coupling. IEEE T. Vis. Comput. Gr. 20 (2013), 303--315.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. H. Wang, Y. Jin, A. Luo, X. Yang, and B. Zhu. 2020. Codimensional surface tension flow using moving-least-squares particles. ACM Trans. Graph. 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. S. Weißmann and U. Pinkall. 2009. Real-time interactive simulation of smoke using discrete integrable vortex filaments. Proc. Vir. Real., Inter. and Phys. Sim., 1--10.Google ScholarGoogle Scholar
  59. S. Weißmann and U. Pinkall. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29 (2010), 115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. S. Weißmann, U. Pinkall, and P. Schröder. 2014. Smoke Rings from Smoke. ACM Trans. Graph. 33 (2014), 140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. C. Wu. 1976. Numerical boundary conditions for viscous flow problems. AIAA J. 14 (1976), 1042--1049.Google ScholarGoogle ScholarCross RefCross Ref
  62. J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2015. Vortical Flows. Springer.Google ScholarGoogle Scholar
  63. S. Xiong and Y. Yang. 2017. The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339 (2017), 31--45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. S. Xiong and Y. Yang. 2019a. Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31 (2019), 047101.Google ScholarGoogle ScholarCross RefCross Ref
  65. S. Xiong and Y. Yang. 2019b. Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874 (2019), 952--978.Google ScholarGoogle ScholarCross RefCross Ref
  66. X. Zhang and R. Bridson. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24 (2005), 965--972.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Incompressible flow simulation on vortex segment clouds

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader