Abstract
We propose a novel Lagrangian geometric representation using segment clouds to simulate incompressible fluid exhibiting strong anisotropic vortical features. The central component of our approach is a cloud of discrete segments enhanced by a set of local segment reseeding operations to facilitate both the geometrical evolution and the topological updates of vortical flow. We build a vortex dynamics solver with the support for dynamic solid boundaries based on discrete segment primitives. We demonstrate the efficacy of our approach by simulating a broad range of challenging flow phenomena, such as reconnection of non-closed vortex tubes and vortex shedding behind a rotating object.
Supplemental Material
- A. S. Almgren, T. Buttke, and P. Colella. 1994. A fast adaptive vortex method in three dimensions. J. Comput. Phys. 113 (1994), 177--200.Google Scholar
Digital Library
- R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE T. Vis. Comput. Gr. 18 (2012), 1202--1214.Google Scholar
Digital Library
- A. Angelidis. 2017. Multi-scale vorticle fluids. ACM Trans. Graph. 36 (2017), 1--12.Google Scholar
Digital Library
- A. Angelidis and F. Neyret. 2005. Simulation of smoke based on vortex filament primitives. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 87--96.Google Scholar
- H. Aref and E. Flinchem. 1985. Dynamics of a vortex filament in a shear flow. J. Fluid Mech. 148 (1985), 477--497.Google Scholar
Cross Ref
- G. Barill, N. G. Dickson, R. Schmidt, D. I. W. Levin, and A. Jacobson. 2018. Fast winding numbers for soups and clouds. ACM Trans. Graph. 37 (2018), 43.Google Scholar
Digital Library
- A. Barnat and N. S. Pollard. 2012. Smoke sheets for graph-structured vortex filaments. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 77--86.Google Scholar
- G. Beardsell, L. Dufresne, and G. Dumas. 2016a. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations. Phys. Fluids 28 (2016), 095103.Google Scholar
Cross Ref
- G. Beardsell, L. Dufresne, and G. Dumas. 2016b. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations. Phys. Fluids 28 (2016), 095103.Google Scholar
Cross Ref
- P. S. Bernard. 2009. Vortex filament simulation of the turbulent coflowing jet. Phys. Fluids 21 (2009), 025107.Google Scholar
Cross Ref
- T. Brochu, T. Keeler, and R. Bridson. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 87--95.Google Scholar
- A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36 (2017), 142.Google Scholar
Digital Library
- A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. 2016. Schrödinger's smoke. ACM Trans. Graph. 35 (2016), 77.Google Scholar
Digital Library
- J. P. Choquin and S. Huberson. 1990. Computational experiments on interactions between numerical and physical instabilities. Int. J. Numer. Meth. Fl. 11 (1990), 541--553.Google Scholar
Cross Ref
- A. J. Chorin. 1973. Numerical study of slightly viscous flow. J. Fluid Mech. 57 (1973), 785--796.Google Scholar
Cross Ref
- A. J. Chorin. 1990. Hairpin removal in vortex interactions. J. Comput. Phys. 91 (1990), 1--21.Google Scholar
Digital Library
- A. J. Chorin. 1993. Hairpin removal in vortex interactions II. J. Comput. Phys. 107 (1993), 1--9.Google Scholar
Digital Library
- R. Cortez. 1996. An impulse-based approximation of fluid motion due to boundary forces. J. Comput. Phys. 123, 2 (1996), 341--353.Google Scholar
Digital Library
- G. H. Cottet and P. Koumoutsakos. 2000. Vortex Methods: Theory and Practice. Cambridge University Press.Google Scholar
- S. Eberhardt, S. Weissmann, U. Pinkall, and N. Thuerey. 2017. Hierarchical vorticity skeletons. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 6.Google Scholar
- L. L. Erickson. 1990. Panel methods: An introduction. Vol. 2995. National Aeronautics and Space Administration.Google Scholar
- V. M. Fernandez, N. J. Zabusky, P. Liu, S. Bhatt, and A. Gerasoulis. 1996. Filament surgery and temporal grid adaptivity extensions to a parallel tree code for simulation and diagnosis in 3D vortex dynamics. In ESAIM: Proceedings, Vol. 1. 197--211.Google Scholar
Cross Ref
- F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. 2016. Narrow band fLIP for liquid simulations. In Computer Graphics Forum, Vol. 35. 225--232.Google Scholar
Cross Ref
- L. Greengard and V. Rokhlin. 1987. A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987), 325--348.Google Scholar
Digital Library
- O. Hald. 1979. Convergence of vortex methods for Euler's equations. II. SIAM J. Numer. Anal. 16 (1979), 726--755.Google Scholar
Digital Library
- O. Hald and V. M. Del Prete. 1978. Convergence of vortex methods for Euler's equations. Math. Comput. 32 (1978), 791--809.Google Scholar
- H. Hasimoto. 1972. A soliton on a vortex filament. J. Fluid Mech. 854 (1972), 477--485.Google Scholar
Cross Ref
- E. Hopfinger, F. Browand, and Y. Gagne. 1982. Turbulence and waves in a rotating tank. J. Fluid Mech. 125 (1982), 505--534.Google Scholar
Cross Ref
- L. Hu, M. Chen, P. X. Liu, and S. Xu. 2020. A vortex method of 3D smoke simulation for virtual surgery. Comput. Meth. Prog. Bio. 198 (2020), 105813.Google Scholar
Cross Ref
- Y. Hu, X. Zhang, M. Gao, and C. Jiang. 2019. On hybrid lagrangian-eulerian simulation methods: practical notes and high-performance aspects. In ACM SIGGRAPH 2019 Courses. 1--246.Google Scholar
- S. C. Hung and R. B. Kinney. 1988. Unsteady viscous flow over a grooved wall: A comparison of two numerical methods. Int. J. Numer. Meth. Fl. 8 (1988), 1403--1437.Google Scholar
Cross Ref
- S. Kida and M. Takaoka. 1994. Vortex reconnection. Annu. Rev. Fluid Mech. 26 (1994), 169--189.Google Scholar
Cross Ref
- D. Kleckner, L. H. Kauffman, and W. T. M. Irvine. 2016. How superfluid vortex knots untie. Nat. Phys. 12 (2016), 650--655.Google Scholar
Cross Ref
- P. Koumoutsakos. 1993. Direct numerical simulations of unsteady separated flows using vortex methods. Ph.D. Dissertation.Google Scholar
- R. Krasny. 1988. Numerical simulation of vortex sheet evolution. Fluid Dyn. Res. 3 (1988), 93--97.Google Scholar
Cross Ref
- K. Kuzmina and I. Marchevsky. 2021. Flow simulation around circular cylinder at low Reynolds numbers using vortex particle method. In Journal of Physics: Conference Series, Vol. 1715. 012067.Google Scholar
Cross Ref
- S. Leibovich. 1978. The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10 (1978), 221--246.Google Scholar
Cross Ref
- M. J. Lighthill. 1963. Introduction: Boundary Layer Theory: Laminar Boundary Layer. Oxford University Press.Google Scholar
- T. Loiseleux, J. M. Chomaz, and P. Huerre. 1998. The effect of swirl on jets and wakes: Linear instability of the Rankine vortex with axial flow. Phys. Fluids 10 (1998), 1120--1134.Google Scholar
Cross Ref
- Y. M. Marzouk and A. F. Ghoniem. 2007. Vorticity structure and evolution in a transverse jet. J. Fluid Mech. 575 (2007), 267--305.Google Scholar
Cross Ref
- A. G. McKenzie. 2007. HOLA: a high-order Lie advection of discrete differential forms with applications in Fluid Dynamics. Ph.D. Dissertation. California Institute of Technology.Google Scholar
- R. Mehra, N. Raghuvanshi, L. Antani, A. Chandak, S. Curtis, and D. Manocha. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans. Graph. 32 (2013), 1--13.Google Scholar
Digital Library
- M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2019. On bubble rings and ink chandeliers. ACM Trans. Graph. 38, 4 (2019).Google Scholar
Digital Library
- S. I. Park and M. J. Kim. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 261--270.Google Scholar
- F. Pepin. 1990. Simulation of the flow past an impulsively started cylinder using a discrete vortex method. Ph.D. Dissertation.Google Scholar
- T. Pfaff, N. Thuerey, and M. Gross. 2012a. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31 (2012).Google Scholar
- T. Pfaff, N. Thuerey, and M. Gross. 2012b. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31 (2012), 1--8.Google Scholar
Digital Library
- Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen. 2019. Efficient and conservative fluids using bidirectional mapping. ACM Trans. Graph. 38, 4 (2019).Google Scholar
Digital Library
- L. Rosenhead. 1931. The formation of vortices from a surface of discontinuity. Proc. Roy. Soc. A 134 (1931), 170--192.Google Scholar
- P. Roushan and X. L. Wu. 2005. Universal wake structures of Kármán vortex streets in two-dimensional flows. Phys. Fluids 17 (2005), 073601.Google Scholar
Cross Ref
- M. W. Scheeler, D. Kleckner, D. Proment, G. L. Kindlmann, and W. T. M. Irvine. 2014. Helicity conservation by flow across scales in reconnecting vortex links and knots. Proc. Natl. Acad. Sci. 111 (2014), 15350--15355.Google Scholar
Cross Ref
- C. Schreck, C. Hafner, and C. Wojtan. 2019. Fundamental solutions for water wave animation. ACM Trans. Graph. 38 (2019), 1--14.Google Scholar
Digital Library
- Z.-S. She, E. Jackson, and S. A. Orszag. 1990. Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344 (1990), 226--228.Google Scholar
Cross Ref
- H. Takami. 1964. A numerical experiment with disecrete vortex approximation, with reference to the rolling up of a vortex sheet. Technical Report. Stanford Univ. Calif.Google Scholar
- W. M. van Rees, F. Hussain, and P. Koumoutsakos. 2012. Vortex tube reconnection at Re = 104. Phys. Fluids 24 (2012), 075105.Google Scholar
Cross Ref
- M. Vines, B. Houston, J. Lang, and W. Lee. 2013. Vortical inviscid flows with two-way solid-fluid coupling. IEEE T. Vis. Comput. Gr. 20 (2013), 303--315.Google Scholar
Digital Library
- H. Wang, Y. Jin, A. Luo, X. Yang, and B. Zhu. 2020. Codimensional surface tension flow using moving-least-squares particles. ACM Trans. Graph. 39, 4 (2020).Google Scholar
Digital Library
- S. Weißmann and U. Pinkall. 2009. Real-time interactive simulation of smoke using discrete integrable vortex filaments. Proc. Vir. Real., Inter. and Phys. Sim., 1--10.Google Scholar
- S. Weißmann and U. Pinkall. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29 (2010), 115.Google Scholar
Digital Library
- S. Weißmann, U. Pinkall, and P. Schröder. 2014. Smoke Rings from Smoke. ACM Trans. Graph. 33 (2014), 140.Google Scholar
Digital Library
- J. C. Wu. 1976. Numerical boundary conditions for viscous flow problems. AIAA J. 14 (1976), 1042--1049.Google Scholar
Cross Ref
- J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2015. Vortical Flows. Springer.Google Scholar
- S. Xiong and Y. Yang. 2017. The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339 (2017), 31--45.Google Scholar
Digital Library
- S. Xiong and Y. Yang. 2019a. Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31 (2019), 047101.Google Scholar
Cross Ref
- S. Xiong and Y. Yang. 2019b. Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874 (2019), 952--978.Google Scholar
Cross Ref
- X. Zhang and R. Bridson. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33 (2014), 1--11.Google Scholar
Digital Library
- Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24 (2005), 965--972.Google Scholar
Digital Library
Index Terms
Incompressible flow simulation on vortex segment clouds
Recommendations
A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers
We present a validation study for the hybrid particle-mesh vortex method against a pseudo-spectral method for the Taylor-Green vortex at Re"@C=1600 as well as in the collision of two antiparallel vortex tubes at Re"@C=10,000. In this study we present ...
Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows
Recent contributions to the 3-D vortex methods are presented. Following Cottet, the particles strength exchange (PSE) scheme for diffusion is modified in the vicinity of solid boundaries to avoid a spurious vorticity flux and to enforce a zero-normal ...
A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies
We present a vortex method for the simulation of the interaction of an incompressible flow with rigid bodies. The method is based on a penalization technique where the system is considered as a single flow, subject to the Navier-Stokes equation with a ...





Comments