skip to main content
research-article
Public Access

Clebsch gauge fluid

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We propose a novel gauge fluid solver based on Clebsch wave functions to solve incompressible fluid equations. Our method combines the expressive power of Clebsch wave functions to represent coherent vortical structures and the generality of gauge methods to accommodate a broad array of fluid phenomena. By evolving a transformed wave function as the system's gauge variable enhanced by an additional projection step to enforce pressure jumps on the free boundaries, our method can significantly improve the vorticity generation and preservation ability for a broad range of gaseous and liquid phenomena. Our approach can be easily implemented by modifying a standard grid-based fluid simulator. It can be used to solve various fluid dynamics, including complex vortex filament dynamics, fluids with different obstacles, and surface-tension flow.

Skip Supplemental Material Section

Supplemental Material

a99-yang.mp4
3450626.3459866.mp4

References

  1. Alexis Angelidis and Fabrice Neyret. 2005. Simulation of smoke based on vortex filament primitives. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. 87--96.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Landon Boyd and Robert Bridson. 2012. MultiFLIP for energetic two-phase fluid simulation. ACM Transactions on Graphics (TOG) 31, 2 (2012), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jeremiah U Brackbill and Hans M Ruppel. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2 (1986), 314--343.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Axel Brandenburg. 2010. Magnetic field evolution in simulations with euler potentials. MON. NOT. R. ASTRON. SOC. 401 (2010), 347--354.Google ScholarGoogle ScholarCross RefCross Ref
  5. Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-noise for procedural fluid flow. ACM Transactions on Graphics (ToG) 26, 3 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Citeseer, 87--95.Google ScholarGoogle Scholar
  7. Tomas F. Buttke. 1993. Velicity Methods: Lagrangian Numerical Methods which Preserve the Hamiltonian Structure of Incompressible Fluid Flow. Springer Netherlands, Dordrecht, 39--57.Google ScholarGoogle Scholar
  8. Thomas F. Buttke and Alexandre J. Chorin. 1993. Turbulence calculations in magnetization variables. Applied Numerical Mathematics 12, 1 (1993), 47 -- 54. SPECIAL ISSUE.Google ScholarGoogle ScholarCross RefCross Ref
  9. C. Cartes, M. D. Bustamante, and M. E. Brachet. 2007. Generalized Eulerian-Lagrangian description of Navier-Stokes dynamics. Phys. Fluids 19 (2007), 077101.Google ScholarGoogle ScholarCross RefCross Ref
  10. A. Chern. 2017. Fluid Dynamics with Incompressible Schrödinger Flow. Ph.D. Dissertation. California institute of technology.Google ScholarGoogle Scholar
  11. A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36 (2017), 142.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. 2016. Schrödinger's smoke. ACM Trans. Graph. 35 (2016), 77.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Clebsch. 1859. Ueber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56 (1859), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  14. Georges-Henri Cottet, Petros D Koumoutsakos, et al. 2000. Vortex methods: theory and practice. Vol. 8. Cambridge university press Cambridge.Google ScholarGoogle Scholar
  15. Ounan Ding, Tamar Shinar, and Craig Schroeder. 2020. Affine particle in cell method for MAC grids and fluid simulation. J. Comput. Phys. 408 (2020), 109311.Google ScholarGoogle ScholarCross RefCross Ref
  16. Aleksandar Donev, Andy Nonaka, Yifei Sun, Thomas Fai, Alejandro Garcia, and John Bell. 2014. Low Mach number fluctuating hydrodynamics of diffusively mixing fluids. Communications in Applied Mathematics and Computational Science 9, 1 (May 2014), 47--105.Google ScholarGoogle ScholarCross RefCross Ref
  17. Weinan E and Jian-Guo Liu. 1997. Finite Difference Schemes for Incompressible Flows in the Velocity-Impulse Density Formulation. J. Comput. Phys. 130, 1 (1997), 67 -- 76.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007. Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG) 26, 1 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ronald Fedkiw, J. Stam, and H. Jensen. 2001. Visual simulation of smoke. Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. N. Foster and Ronald Fedkiw. 2001. Practical animation of liquids. Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001).Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C. Fu, Q. Guo, Theodore F. Gast, Chenfanfu Jiang, and J. Teran. 2017. A polynomial particle-in-cell method. ACM Transactions on Graphics (TOG) 36 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Gagniere, David Hyde, A. Marquez-Razon, C. Jiang, Z. Ge, X. Han, Q. Guo, and J. Teran. 2020. A Hybrid Lagrangian/Eulerian Collocated Advection and Projection Method for Fluid Simulation. ArXiv abs/2003.12227 (2020).Google ScholarGoogle Scholar
  23. C. R. Graham and F. S. Henyey. 2000. Clebsch representation near points where the vorticity vanishes. Phys. Fluids 12 (2000), 744--746.Google ScholarGoogle ScholarCross RefCross Ref
  24. P. He and Y. Yang. 2016. Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals. Phys. Fluids 28 (2016), 037101.Google ScholarGoogle ScholarCross RefCross Ref
  25. H. Hopf. 1931. Über die Abbildungen der Dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104 (1931), 637--665.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Jeong and F. Hussain. 1995. On the identification of a vortex. J. Fluid. Mech. 285 (1995), 69--94.Google ScholarGoogle ScholarCross RefCross Ref
  27. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Myungjoo Kang, Ronald P Fedkiw, and Xu-Dong Liu. 2000. A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing 15, 3 (2000), 323--360.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Kedia, D. Foster, M. R. Dennis, and W. T. M. Irvine. 2016. Weaving knotted vector fields with tunable helicity. Phys. Rev. Lett. 117 (2016), 274501.Google ScholarGoogle ScholarCross RefCross Ref
  30. ByungMoon Kim, Y. Liu, I. Llamas, and J. Rossignac. 2005. FlowFixer: Using BFECC for Fluid Simulation. In NPH.Google ScholarGoogle Scholar
  31. Doyub Kim, Oh-Young Song, and Hyeongseok Ko. 2009. Stretching and wiggling liquids. ACM SIGGRAPH Asia 2009 papers (2009).Google ScholarGoogle Scholar
  32. Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence for fluid simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Dustin Kleckner and William TM Irvine. 2013. Creation and dynamics of knotted vortices. Nat. Phys. 9, 4 (2013), 253--258.Google ScholarGoogle ScholarCross RefCross Ref
  34. P. Robert Kotiuga. 1991. Clebsch potentials and the visualization of three-dimensional solenoidal vector fields. IEEE T. MAGN 27 (1991), 3986--3989.Google ScholarGoogle ScholarCross RefCross Ref
  35. Petros Koumoutsakos, Georges-Henri Cottet, and Diego Rossinelli. 2008. Flow simulations using particles-Bridging Computer Graphics and CFD. In SIGGRAPH 2008-35th International Conference on Computer Graphics and Interactive Techniques. ACM, 1--73.Google ScholarGoogle Scholar
  36. G. A. Kuz'min. 1983. Ideal incompressible hydrodynamics in terms of the vortex momentum density. Phys. Lett. A 96 (1983), 88--90.Google ScholarGoogle ScholarCross RefCross Ref
  37. H. Lamb. 1932. Hydrodynamics (6 ed.). Cambridge University Press.Google ScholarGoogle Scholar
  38. A Leonard. 1980. Vortex methods for flow simulation. J. Comput. Phys. 37, 3 (1980), 289--335.Google ScholarGoogle ScholarCross RefCross Ref
  39. TT Lim. 1989. An experimental study of a vortex ring interacting with an inclined wall. Exp. Fluids 7, 7 (1989), 453--463.Google ScholarGoogle ScholarCross RefCross Ref
  40. TT Lim. 1997. A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers. Phys. Fluids 9, 1 (1997), 239--241.Google ScholarGoogle ScholarCross RefCross Ref
  41. Miao'er Liu, Yu-Xin Ren, and Hanxin Zhang. 2004. A class of fully second order accurate projection methods for solving the incompressible Navier-Stokes equations. J. Comput. Phys. 200, 1 (2004), 325 -- 346.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. John H. Maddocks and Robert L. Pego. 1995. An unconstrained Hamiltonian formulation for incompressible fluid flow. Comm. Math. Phys. 170, 1 (1995), 207--217.Google ScholarGoogle ScholarCross RefCross Ref
  43. Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009. Energy-preserving integrators for fluid animation. ACM Transactions on Graphics (TOG) 28, 3 (2009), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. V I Oseledets. 1989. On a new way of writing the Navier-Stokes equation. The Hamiltonian formalism. Russian Mathematical Surveys 44, 3 (jun 1989), 210--211.Google ScholarGoogle ScholarCross RefCross Ref
  45. S. Park and M. Kim. 2005. Vortex fluid for gaseous phenomena. In SCA '05.Google ScholarGoogle Scholar
  46. Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for animating fluids. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient and conservative fluids using bidirectional mapping. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. R. Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Sci. Adv. 2 (2016), e1501869.Google ScholarGoogle ScholarCross RefCross Ref
  49. Robert Saye. 2017a. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I. J. Comput. Phys. 344 (2017), 647 -- 682.Google ScholarGoogle ScholarCross RefCross Ref
  50. Robert Saye. 2017b. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part II. J. Comput. Phys. 344 (2017), 683 -- 723.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. A. Selle, Ronald Fedkiw, ByungMoon Kim, Y. Liu, and J. Rossignac. 2008. An Unconditionally Stable MacCormack Method. Journal of Scientific Computing 35 (2008), 350--371.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for smoke, water and explosions. In ACM SIGGRAPH 2005 Papers. 910--914.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. C. B. Smiet, S. Candelaresi, and D. Bouwmeester. 2017. Ideal relaxation of the Hopf fibration. Phys. Plasmas 24 (2017), 072110.Google ScholarGoogle ScholarCross RefCross Ref
  54. C. B. Smiet, S. Candelaresi, A. Thompson, J. Swearngin, J.W. Dalhuisen, and D. Bouwmeester. 2015. Self-organizing knotted magnetic structures in plasma. Phys. Rev. Lett. 115 (2015), 095001.Google ScholarGoogle ScholarCross RefCross Ref
  55. J. Stam. 1999. Stable fluids. In SIGGRAPH '99.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Mark J Stock, Werner JA Dahm, and Grétar Tryggvason. 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method. J. Comput. Phys. 227, 21 (2008), 9021--9043.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. D.M. Summers. 2000. A Representation of Bounded Viscous Flow Based on Hodge Decomposition of Wall Impulse. J. Comput. Phys. 158, 1 (2000), 28 -- 50.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. D M Summers and A J Chorin. 1996. Numerical vorticity creation based on impulse conservation. Proceedings of the National Academy of Sciences 93, 5 (1996), 1881--1885.Google ScholarGoogle ScholarCross RefCross Ref
  59. S. Weißmann and U. Pinkall. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29 (2010), 115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. S. Xiong and Y. Yang. 2017. The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339 (2017), 31--45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. S. Xiong and Y. Yang. 2019. Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874 (2019), 952--978.Google ScholarGoogle ScholarCross RefCross Ref
  62. S. Xiong and Y. Yang. 2020. Evolution and helicity analysis of linked vortex tubes in viscous flows. Sci. Sin-Phys. Mech. Astron. 50 (2020), 040005.Google ScholarGoogle ScholarCross RefCross Ref
  63. Y. Yang and D. I. Pullin. 2011. Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows. J. Fluid Mech. 685 (2011), 146--164.Google ScholarGoogle ScholarCross RefCross Ref
  64. V. E. Zakharov and E. A. Kuznetsov. 1997. Hamiltonian formalism for nonlinear waves. Phys.-Usp. 40 (1997), 1087--1116.Google ScholarGoogle ScholarCross RefCross Ref
  65. Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the missing vorticity in advection-projection fluid solvers. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Y. Zhao, S. Xiong, Y. Yang, and S. Chen. 2018. Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots. Phys. Rev. Fluids 3 (2018), 074701.Google ScholarGoogle ScholarCross RefCross Ref
  67. Y. Zhao, Y. Yang, and S. Chen. 2016. Vortex reconnection in the late transition in channel flow. J. Fluid Mech. 802 (2016), R4.Google ScholarGoogle ScholarCross RefCross Ref
  68. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions on Graphics (TOG) 24, 3 (2005), 965--972.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Clebsch gauge fluid

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader