Abstract
We propose a novel gauge fluid solver based on Clebsch wave functions to solve incompressible fluid equations. Our method combines the expressive power of Clebsch wave functions to represent coherent vortical structures and the generality of gauge methods to accommodate a broad array of fluid phenomena. By evolving a transformed wave function as the system's gauge variable enhanced by an additional projection step to enforce pressure jumps on the free boundaries, our method can significantly improve the vorticity generation and preservation ability for a broad range of gaseous and liquid phenomena. Our approach can be easily implemented by modifying a standard grid-based fluid simulator. It can be used to solve various fluid dynamics, including complex vortex filament dynamics, fluids with different obstacles, and surface-tension flow.
Supplemental Material
- Alexis Angelidis and Fabrice Neyret. 2005. Simulation of smoke based on vortex filament primitives. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. 87--96.Google Scholar
Digital Library
- Landon Boyd and Robert Bridson. 2012. MultiFLIP for energetic two-phase fluid simulation. ACM Transactions on Graphics (TOG) 31, 2 (2012), 1--12.Google Scholar
Digital Library
- Jeremiah U Brackbill and Hans M Ruppel. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2 (1986), 314--343.Google Scholar
Digital Library
- Axel Brandenburg. 2010. Magnetic field evolution in simulations with euler potentials. MON. NOT. R. ASTRON. SOC. 401 (2010), 347--354.Google Scholar
Cross Ref
- Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-noise for procedural fluid flow. ACM Transactions on Graphics (ToG) 26, 3 (2007).Google Scholar
Digital Library
- Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Citeseer, 87--95.Google Scholar
- Tomas F. Buttke. 1993. Velicity Methods: Lagrangian Numerical Methods which Preserve the Hamiltonian Structure of Incompressible Fluid Flow. Springer Netherlands, Dordrecht, 39--57.Google Scholar
- Thomas F. Buttke and Alexandre J. Chorin. 1993. Turbulence calculations in magnetization variables. Applied Numerical Mathematics 12, 1 (1993), 47 -- 54. SPECIAL ISSUE.Google Scholar
Cross Ref
- C. Cartes, M. D. Bustamante, and M. E. Brachet. 2007. Generalized Eulerian-Lagrangian description of Navier-Stokes dynamics. Phys. Fluids 19 (2007), 077101.Google Scholar
Cross Ref
- A. Chern. 2017. Fluid Dynamics with Incompressible Schrödinger Flow. Ph.D. Dissertation. California institute of technology.Google Scholar
- A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36 (2017), 142.Google Scholar
Digital Library
- A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. 2016. Schrödinger's smoke. ACM Trans. Graph. 35 (2016), 77.Google Scholar
Digital Library
- A. Clebsch. 1859. Ueber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56 (1859), 1--10.Google Scholar
Cross Ref
- Georges-Henri Cottet, Petros D Koumoutsakos, et al. 2000. Vortex methods: theory and practice. Vol. 8. Cambridge university press Cambridge.Google Scholar
- Ounan Ding, Tamar Shinar, and Craig Schroeder. 2020. Affine particle in cell method for MAC grids and fluid simulation. J. Comput. Phys. 408 (2020), 109311.Google Scholar
Cross Ref
- Aleksandar Donev, Andy Nonaka, Yifei Sun, Thomas Fai, Alejandro Garcia, and John Bell. 2014. Low Mach number fluctuating hydrodynamics of diffusively mixing fluids. Communications in Applied Mathematics and Computational Science 9, 1 (May 2014), 47--105.Google Scholar
Cross Ref
- Weinan E and Jian-Guo Liu. 1997. Finite Difference Schemes for Incompressible Flows in the Velocity-Impulse Density Formulation. J. Comput. Phys. 130, 1 (1997), 67 -- 76.Google Scholar
Digital Library
- Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007. Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG) 26, 1 (2007).Google Scholar
Digital Library
- Ronald Fedkiw, J. Stam, and H. Jensen. 2001. Visual simulation of smoke. Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001).Google Scholar
Digital Library
- N. Foster and Ronald Fedkiw. 2001. Practical animation of liquids. Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001).Google Scholar
Digital Library
- C. Fu, Q. Guo, Theodore F. Gast, Chenfanfu Jiang, and J. Teran. 2017. A polynomial particle-in-cell method. ACM Transactions on Graphics (TOG) 36 (2017), 1--12.Google Scholar
Digital Library
- S. Gagniere, David Hyde, A. Marquez-Razon, C. Jiang, Z. Ge, X. Han, Q. Guo, and J. Teran. 2020. A Hybrid Lagrangian/Eulerian Collocated Advection and Projection Method for Fluid Simulation. ArXiv abs/2003.12227 (2020).Google Scholar
- C. R. Graham and F. S. Henyey. 2000. Clebsch representation near points where the vorticity vanishes. Phys. Fluids 12 (2000), 744--746.Google Scholar
Cross Ref
- P. He and Y. Yang. 2016. Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals. Phys. Fluids 28 (2016), 037101.Google Scholar
Cross Ref
- H. Hopf. 1931. Über die Abbildungen der Dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104 (1931), 637--665.Google Scholar
Cross Ref
- J. Jeong and F. Hussain. 1995. On the identification of a vortex. J. Fluid. Mech. 285 (1995), 69--94.Google Scholar
Cross Ref
- Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--10.Google Scholar
Digital Library
- Myungjoo Kang, Ronald P Fedkiw, and Xu-Dong Liu. 2000. A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing 15, 3 (2000), 323--360.Google Scholar
Digital Library
- H. Kedia, D. Foster, M. R. Dennis, and W. T. M. Irvine. 2016. Weaving knotted vector fields with tunable helicity. Phys. Rev. Lett. 117 (2016), 274501.Google Scholar
Cross Ref
- ByungMoon Kim, Y. Liu, I. Llamas, and J. Rossignac. 2005. FlowFixer: Using BFECC for Fluid Simulation. In NPH.Google Scholar
- Doyub Kim, Oh-Young Song, and Hyeongseok Ko. 2009. Stretching and wiggling liquids. ACM SIGGRAPH Asia 2009 papers (2009).Google Scholar
- Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence for fluid simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1--6.Google Scholar
Digital Library
- Dustin Kleckner and William TM Irvine. 2013. Creation and dynamics of knotted vortices. Nat. Phys. 9, 4 (2013), 253--258.Google Scholar
Cross Ref
- P. Robert Kotiuga. 1991. Clebsch potentials and the visualization of three-dimensional solenoidal vector fields. IEEE T. MAGN 27 (1991), 3986--3989.Google Scholar
Cross Ref
- Petros Koumoutsakos, Georges-Henri Cottet, and Diego Rossinelli. 2008. Flow simulations using particles-Bridging Computer Graphics and CFD. In SIGGRAPH 2008-35th International Conference on Computer Graphics and Interactive Techniques. ACM, 1--73.Google Scholar
- G. A. Kuz'min. 1983. Ideal incompressible hydrodynamics in terms of the vortex momentum density. Phys. Lett. A 96 (1983), 88--90.Google Scholar
Cross Ref
- H. Lamb. 1932. Hydrodynamics (6 ed.). Cambridge University Press.Google Scholar
- A Leonard. 1980. Vortex methods for flow simulation. J. Comput. Phys. 37, 3 (1980), 289--335.Google Scholar
Cross Ref
- TT Lim. 1989. An experimental study of a vortex ring interacting with an inclined wall. Exp. Fluids 7, 7 (1989), 453--463.Google Scholar
Cross Ref
- TT Lim. 1997. A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers. Phys. Fluids 9, 1 (1997), 239--241.Google Scholar
Cross Ref
- Miao'er Liu, Yu-Xin Ren, and Hanxin Zhang. 2004. A class of fully second order accurate projection methods for solving the incompressible Navier-Stokes equations. J. Comput. Phys. 200, 1 (2004), 325 -- 346.Google Scholar
Digital Library
- John H. Maddocks and Robert L. Pego. 1995. An unconstrained Hamiltonian formulation for incompressible fluid flow. Comm. Math. Phys. 170, 1 (1995), 207--217.Google Scholar
Cross Ref
- Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009. Energy-preserving integrators for fluid animation. ACM Transactions on Graphics (TOG) 28, 3 (2009), 1--8.Google Scholar
Digital Library
- V I Oseledets. 1989. On a new way of writing the Navier-Stokes equation. The Hamiltonian formalism. Russian Mathematical Surveys 44, 3 (jun 1989), 210--211.Google Scholar
Cross Ref
- S. Park and M. Kim. 2005. Vortex fluid for gaseous phenomena. In SCA '05.Google Scholar
- Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for animating fluids. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--8.Google Scholar
Digital Library
- Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient and conservative fluids using bidirectional mapping. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--12.Google Scholar
Digital Library
- R. Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Sci. Adv. 2 (2016), e1501869.Google Scholar
Cross Ref
- Robert Saye. 2017a. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I. J. Comput. Phys. 344 (2017), 647 -- 682.Google Scholar
Cross Ref
- Robert Saye. 2017b. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part II. J. Comput. Phys. 344 (2017), 683 -- 723.Google Scholar
Digital Library
- A. Selle, Ronald Fedkiw, ByungMoon Kim, Y. Liu, and J. Rossignac. 2008. An Unconditionally Stable MacCormack Method. Journal of Scientific Computing 35 (2008), 350--371.Google Scholar
Digital Library
- Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for smoke, water and explosions. In ACM SIGGRAPH 2005 Papers. 910--914.Google Scholar
Digital Library
- C. B. Smiet, S. Candelaresi, and D. Bouwmeester. 2017. Ideal relaxation of the Hopf fibration. Phys. Plasmas 24 (2017), 072110.Google Scholar
Cross Ref
- C. B. Smiet, S. Candelaresi, A. Thompson, J. Swearngin, J.W. Dalhuisen, and D. Bouwmeester. 2015. Self-organizing knotted magnetic structures in plasma. Phys. Rev. Lett. 115 (2015), 095001.Google Scholar
Cross Ref
- J. Stam. 1999. Stable fluids. In SIGGRAPH '99.Google Scholar
Digital Library
- Mark J Stock, Werner JA Dahm, and Grétar Tryggvason. 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method. J. Comput. Phys. 227, 21 (2008), 9021--9043.Google Scholar
Digital Library
- D.M. Summers. 2000. A Representation of Bounded Viscous Flow Based on Hodge Decomposition of Wall Impulse. J. Comput. Phys. 158, 1 (2000), 28 -- 50.Google Scholar
Digital Library
- D M Summers and A J Chorin. 1996. Numerical vorticity creation based on impulse conservation. Proceedings of the National Academy of Sciences 93, 5 (1996), 1881--1885.Google Scholar
Cross Ref
- S. Weißmann and U. Pinkall. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29 (2010), 115.Google Scholar
Digital Library
- S. Xiong and Y. Yang. 2017. The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339 (2017), 31--45.Google Scholar
Digital Library
- S. Xiong and Y. Yang. 2019. Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874 (2019), 952--978.Google Scholar
Cross Ref
- S. Xiong and Y. Yang. 2020. Evolution and helicity analysis of linked vortex tubes in viscous flows. Sci. Sin-Phys. Mech. Astron. 50 (2020), 040005.Google Scholar
Cross Ref
- Y. Yang and D. I. Pullin. 2011. Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows. J. Fluid Mech. 685 (2011), 146--164.Google Scholar
Cross Ref
- V. E. Zakharov and E. A. Kuznetsov. 1997. Hamiltonian formalism for nonlinear waves. Phys.-Usp. 40 (1997), 1087--1116.Google Scholar
Cross Ref
- Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the missing vorticity in advection-projection fluid solvers. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--8.Google Scholar
Digital Library
- Y. Zhao, S. Xiong, Y. Yang, and S. Chen. 2018. Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots. Phys. Rev. Fluids 3 (2018), 074701.Google Scholar
Cross Ref
- Y. Zhao, Y. Yang, and S. Chen. 2016. Vortex reconnection in the late transition in channel flow. J. Fluid Mech. 802 (2016), R4.Google Scholar
Cross Ref
- Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions on Graphics (TOG) 24, 3 (2005), 965--972.Google Scholar
Digital Library
Index Terms
Clebsch gauge fluid
Recommendations
Unified particle system for multiple-fluid flow and porous material
Porous materials are common in daily life. They include granular material (e.g. sand) that behaves like liquid flow when mixed with fluid and foam material (e.g. sponge) that deforms like solid when interacting with liquid. The underlying physics is ...
Finite volume flow simulations on arbitrary domains
We present a novel method for solving the incompressible Navier-Stokes equations that more accurately handles arbitrary boundary conditions and sharp geometric features in the fluid domain. It uses a space filling tetrahedral mesh, which can be created ...
Real-time smoke simulation with improved turbulence by spatial adaptive vorticity confinement
Turbulence modeling has recently drawn many attentions in fluid animation to generate small-scale rolling features. Being one of the widely adopted approaches, vorticity confinement method re-injects lost energy dissipation back to the flow. However, ...





Comments