skip to main content
research-article
Open Access

A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We present a novel Material Point Method (MPM) discretization of surface tension forces that arise from spatially varying surface energies. These variations typically arise from surface energy dependence on temperature and/or concentration. Furthermore, since the surface energy is an interfacial property depending on the types of materials on either side of an interface, spatial variation is required for modeling the contact angle at the triple junction between a liquid, solid and surrounding air. Our discretization is based on the surface energy itself, rather than on the associated traction condition most commonly used for discretization with particle methods. Our energy based approach automatically captures surface gradients without the explicit need to resolve them as in traction condition based approaches. We include an implicit discretization of thermomechanical material coupling with a novel particle-based enforcement of Robin boundary conditions associated with convective heating. Lastly, we design a particle resampling approach needed to achieve perfect conservation of linear and angular momentum with Affine-Particle-In-Cell (APIC) [Jiang et al. 2015]. We show that our approach enables implicit time stepping for complex behaviors like the Marangoni effect and hydrophobicity/hydrophilicity. We demonstrate the robustness and utility of our method by simulating materials that exhibit highly diverse degrees of surface tension and thermomechanical effects, such as water, wine and wax.

Skip Supplemental Material Section

Supplemental Material

a111-chen.mp4
3450626.3459874.mp4

References

  1. A. Adamson and A. Gast. 1967. Physical chemistry of surfaces. Vol. 150. Interscience Publishers New York.Google ScholarGoogle Scholar
  2. R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles. IEEE Trans Vis Comp Graph 18, 8 (Aug. 2012), 1202--1214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. O. Azencot, O. Vantzos, M. Wardetzky, M. Rumpf, and M. Ben-Chen. 2015. Functional thin films on surfaces. In Proc 14th ACM SIGGRAPH/Eurograph Symp Comp Anim. 137--146.Google ScholarGoogle Scholar
  4. C. Batty, A. Uribe, B. Audoly, and E. Grinspun. 2012. Discrete viscous sheets. ACM Trans Graph (TOG) 31, 4 (2012), 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Belytschko, W. Liu, B. Moran, and K. Elkhodary. 2013. Nonlinear finite elements for continua and structures. John Wiley and sons.Google ScholarGoogle Scholar
  6. J. Brackbill, D. Kothe, and C. Zemach. 1992. A continuum method for modeling surface tension. J Comp Phys 100, 2 (1992), 335--354.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. Buscaglia and R. Ausas. 2011. Variational formulations for surface tension, capillarity and wetting. Comp Meth App Mech Eng 200, 45-46 (2011), 3011--3025.Google ScholarGoogle ScholarCross RefCross Ref
  8. A.B.D. Cassie and S. Baxter. 1944. Wettability of porous surfaces. Transactions of the Faraday society 40 (1944), 546--551.Google ScholarGoogle ScholarCross RefCross Ref
  9. C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D. Nowrouzezahrai, and T. Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans Graph 36, 4 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Chen, V. Kala, A. Marquez-Razon, E. Gueidon, D. Hyde, and J. Teran. 2021. Supplementary Technical Document. Technical Report.Google ScholarGoogle Scholar
  11. Y.-L. Chen, J. Meier, B. Solenthaler, and V.C. Azevedo. 2020. An Extended Cut-Cell Method for Sub-Grid Liquids Tracking with Surface Tension. ACM Trans Graph 39, 6, Article 169 (Nov. 2020), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Chernyaev. 1995. Marching cubes 33: Construction of topologically correct isosurfaces. Technical Report.Google ScholarGoogle Scholar
  13. P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O'Brien. 2013. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Transactions on Graphics (TOG) 32, 2 (2013), 17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Corsini, P. Cignoni, and R. Scopigno. 2012. Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes. IEEE Trans Vis Comp Graph 18, 6 (2012), 914--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. Da, C. Batty, C. Wojtan, and E. Grinspun. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans Graph (SIGGRAPH 2015) (2015).Google ScholarGoogle Scholar
  16. F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. 2016. Surface-only liquids. ACM Trans Graph (TOG) 35, 4 (2016), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Daviet and F. Bertails-Descoubes. 2016. A Semi-implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans Graph 35, 4 (2016), 102:1--102:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. C. de Langavant, A. Guittet, M. Theillard, F. Temprano-Coleto, and F. Gibou. 2017. Level-set simulations of soluble surfactant driven flows. J Comp Phys 348 (2017), 271--297.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. de Vaucorbeil, V. P. Nguyen, S. Sinaie, and J. Y. Wu. 2020. Chapter Two - Material point method after 25 years: Theory, implementation, and applications. Advances in Applied Mechanics, Vol. 53. Elsevier, 185 -- 398. Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Ding, X. Han, S. Wang, T. Gast, and J. Teran. 2019. A thermomechanical material point method for baking and cooking. ACM Trans Graph 38, 6 (2019), 192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Dukler, H. Ji, C. Falcon, and A. L Bertozzi. 2020. Theory for undercompressive shocks in tears of wine. Phys Rev Fluids 5, 3 (2020), 034002.Google ScholarGoogle ScholarCross RefCross Ref
  22. E. Edwards and R. Bridson. 2012. A high-order accurate Particle-In-Cell method. Int J Numer Meth Eng 90 (2012), 1073--1088.Google ScholarGoogle ScholarCross RefCross Ref
  23. Y. Fang, M. Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans Graph 38, 4 (2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Farahi, A. Passian, T. Ferrell, and T. Thundat. 2004. Microfluidic manipulation via Marangoni forces. Applied Phys Let 85, 18 (2004), 4237--4239.Google ScholarGoogle ScholarCross RefCross Ref
  25. Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Trans Graph 37, 4 (2018), 51:1--51:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Fei, H. Maia, C. Batty, C. Zheng, and E. Grinspun. 2017. A multi-scale model for simulating liquid-hair interactions. ACM Trans. Graph. 36, 4 (2017), 56:1--56:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. M. Francois, J. M. Sicilian, and D. B. Kothe. 2006. Modeling of thermocapillary forces within a volume tracking algorithm. In Modeling of Casting, Welding and Advanced Solidification Processes-XI (Opio, France). 935--942.Google ScholarGoogle Scholar
  28. C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. 2017. A Polynomial Particle-in-cell Method. ACM Trans Graph 36, 6 (Nov. 2017), 222:1--222:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Gao, A. Tampubolon, C. Jiang, and E. Sifakis. 2017b. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans Graph 36, 6 (2017), 223:1--223:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Gao, S. Li, L. Yang, H. Qin, and A. Hao. 2017a. An efficient heat-based model for solid-liquid-gas phase transition and dynamic interaction. Graphical Models 94 (2017), 14 -- 24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. I. Georgiev, T. Ize, M. Farnsworth, R. Montoya-Vozmediano, A. King, B. Van Lommel, A. Jimenez, O. Anson, S. Ogaki, E. Johnston, A. Herubel, D. Russell, F. Servant, and M. Fajardo. 2018. Arnold: A brute-force production path tracer. ACM Transactions on Graphics (TOG) 37, 3 (2018), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. 2020a. An Implicit Compressible SPH Solver for Snow Simulation. ACM Trans Graph 39, 4, Article 36 (July 2020), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. 2020b. An implicit compressible SPH solver for snow simulation. ACM Trans Graph (TOG) 39, 4 (2020), 36--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. O. Gonzalez and A. Stuart. 2008. A first course in continuum mechanics. Cambridge University Press.Google ScholarGoogle Scholar
  35. Y. Gu and Y.-H. Yang. 2016. Physics Based Boiling Bubble Simulation. In SIGGRAPH ASIA 2016 Technical Briefs (Macau) (SA '16). Association for Computing Machinery, New York, NY, USA, Article 5, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method for thin shells with frictional contact. ACM Trans Graph 37, 4 (2018), 147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. F. Harlow and E. Welch. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fl 8, 12 (1965), 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  38. H. Hochstetter and A. Kolb. 2017. Evaporation and Condensation of SPH-Based Fluids. In Proc ACM SIGGRAPH/Eurographics Symp Comp Anim (Los Angeles, California) (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 3, 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Hopp-Hirschler, M. S. Shadloo, and U. Nieken. 2018. A Smoothed Particle Hydrodynamics approach for thermo-capillary flows. Comp Fluids 176 (2018), 1 -- 19. Google ScholarGoogle ScholarCross RefCross Ref
  40. H. Hu and P. Eberhard. 2017. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics. Comp Part Mech 4 (Oct 2017), 473--486. Issue 4. Google ScholarGoogle ScholarCross RefCross Ref
  41. W. Huang, J. Iseringhausen, T. Kneiphof, Z. Qu, C. Jiang, and M.B. Hullin. 2020. Chemomechanical Simulation of Soap Film Flow on Spherical Bubbles. ACM Trans Graph 39, 4, Article 41 (July 2020), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. D.A.B. Hyde, S.W. Gagniere, A. Marquez-Razon, and J. Teran. 2020. An Implicit Updated Lagrangian Formulation for Liquids with Large Surface Energy. ACM Trans Graph 39, 6, Article 183 (Nov. 2020), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 131--140.Google ScholarGoogle Scholar
  44. S. Ishida, P. Synak, F. Narita, T. Hachisuka, and C. Wojtan. 2020. A Model for Soap Film Dynamics with Evolving Thickness. ACM Trans Graph 39, 4, Article 31 (July 2020), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017), 152.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-In-Cell Method. ACM Trans Graph 34, 4 (2015), 51:1--51:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The Material Point Method for Simulating Continuum Materials. In ACM SIGGRAPH 2016 Course. 24:1--24:52.Google ScholarGoogle Scholar
  48. R. E. Johnson Jr. and R. H. Dettre. 1964. Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem 68, 7 (1964), 1744--1750.Google ScholarGoogle ScholarCross RefCross Ref
  49. G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager Elastoplasticity for Sand Animation. ACM Trans Graph 35, 4 (2016), 103:1--103:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. D. Langbein. 2002. Capillary surfaces: shape - stability - dynamics, in particular under weightlessness. Vol. 178. Springer Science & Business Media.Google ScholarGoogle Scholar
  51. T. Lenaerts and P. Dutré. 2009. An architecture for unified SPH simulations. CW Reports (2009).Google ScholarGoogle Scholar
  52. W. Li, D. Liu, M. Desbrun, J. Huang, and X. Liu. 2020. Kinetic-based Multiphase Flow Simulation. IEEE Trans Vis Comp Graph (2020).Google ScholarGoogle Scholar
  53. F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-Way Coupled SPH and Particle Level Set Fluid Simulation. IEEE Trans Visu Comp Graph 14, 4 (2008), 797--804.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. T. Maeshima, Y. Kim, and T. I. Zohdi. 2020. Particle-scale numerical modeling of thermomechanical phenomena for additive manufacturing using the material point method. Computational Particle Mechanics (2020). Google ScholarGoogle ScholarCross RefCross Ref
  55. J. Monaghan. 1992. Smoothed particle hydrodynamics. Ann Rev Astron Astroph 30, 1 (1992), 543--574.Google ScholarGoogle ScholarCross RefCross Ref
  56. R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1--173:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. S. Nas and G. Tryggvason. 2003. Thermocapillary interaction of two bubbles or drops. Int J Multiphase Flow 29, 7 (2003), 1117--1135. Google ScholarGoogle ScholarCross RefCross Ref
  58. R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. 2002. Shape Distributions. ACM Trans. Graph. 21, 4 (Oct. 2002), 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares. 2009. Particle-based viscoplastic fluid/solid simulation. Computer-Aided Design 41, 4 (2009), 306--314.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. Guibas. 2005. Meshless animation of fracturing solids. ACM Trans Graph 24, 3 (2005), 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. S. Pirk, M. Jarząbek, T. Hädrich, D.L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. 36, 6, Article 197 (Nov. 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157--163.Google ScholarGoogle Scholar
  63. R. Rioboo, C. Tropea, and M. Marengo. 2001. Outcomes from a Drop Impact on Solid Surfaces. Atomization and Sprays 11, 2 (2001).Google ScholarGoogle Scholar
  64. M. A. Russell. 2018. A Smoothed Particle Hydrodynamics Model for the Simulation of Laser Fusion Additive Manufacturing Processes. Ph.D. Dissertation. UC Berkeley.Google ScholarGoogle Scholar
  65. C. Schreck and C. Wojtan. 2020. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum - Eurographics 2020 39, 2 (2020).Google ScholarGoogle Scholar
  66. L. Scriven and C. Sternling. 1960. The marangoni effects. Nature 187, 4733 (1960), 186--188.Google ScholarGoogle Scholar
  67. A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent invertible elasticity. In Proc Symp Comp Anim. 25--32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A Material Point Method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1--102:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1--138:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. D. Sulsky, Z. Chen, and H. Schreyer. 1994. A particle method for history-dependent materials. Comp Meth App Mech Eng 118, 1 (1994), 179--196.Google ScholarGoogle ScholarCross RefCross Ref
  71. M. Sussman and M. Ohta. 2009. A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J Sci Comp 31, 4 (2009), 2447--2471.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. A. Tartakovsky and P. Meakin. 2005. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72 (Aug 2005), 026301. Issue 2. Google ScholarGoogle ScholarCross RefCross Ref
  73. D. Terzopoulos, J. Platt, and K. Fleischer. 1991. Heating and melting deformable models. The Journal of Visualization and Computer Animation 2, 2 (1991), 68--73.Google ScholarGoogle ScholarCross RefCross Ref
  74. J. Thomson. 1855. XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. London, Edinburgh, and Dublin Phil Mag J Sci 10, 67 (1855), 330--333.Google ScholarGoogle ScholarCross RefCross Ref
  75. N. Thürey, C. Wojtan, M. Gross, and G. Turk. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans Graph (TOG) 29, 4 (2010), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. M. Tong and D. J. Browne. 2014. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. Int J Heat Mass Transfer 73 (2014), 284 -- 292. Google ScholarGoogle ScholarCross RefCross Ref
  77. D. C. Venerus and D. N. Simavilla. 2015. Tears of wine: New insights on an old phenomenon. Scientific reports 5 (2015), 16162.Google ScholarGoogle Scholar
  78. C. Wang, Q. Zhang, H. Xiao, and Q. Shen. 2012. Simulation of multiple fluids with solidliquid phase transition. Comp Anim Virtual Worlds 23, 3-4 (2012), 279--289. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1457 Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. H. Wang, Y. Jin, A. Luo, X. Yang, and B. Zhu. 2020a. Codimensional Surface Tension Flow Using Moving-Least-Squares Particles. ACM Trans Graph 39, 4, Article 42 (July 2020), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. H. Wang, G. Miller, and G. Turk. 2007. Solving General Shallow Wave Equations on Surfaces (SCA '07). Eurographics Association, Goslar, DEU, 229--238.Google ScholarGoogle Scholar
  81. H. Wang, P. J. Mucha, and G. Turk. 2005. Water Drops on Surfaces. ACM Tran. Graph 24, 3 (July 2005), 921--929. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. S. Wang, M. Ding, T. Gast, L. Zhu, S. Gagniere, C. Jiang, and J. Teran. 2019. Simulation and Visualization of Ductile Fracture with the Material Point Method. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 2, 18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. X. Wang, M. Li, Y. Fang, X. Zhang, M. Gao, M. Tang, D. Kaufman, and C. Jiang. 2020b. Hierarchical optimization time integration for CFL-rate MPM stepping. ACM Trans Graph (TOG) 39, 3 (2020), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. X. Wang, Y. Qiu, S.R. Slattery, Y. Fang, M. Li, S.-C. Zhu, Y. Zhu, M. Tang, D. Manocha, and C. Jiang. 2020c. A Massively Parallel and Scalable Multi-GPU Material Point Method. ACM Trans Graph 39, 4, Article 30 (July 2020), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. C. Wojtan, N. Thürey, M. Gross, and G. Turk. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans Graph 29, 4 (2010), 50:1--50:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. J. Wolper, Y. Chen, M. Li, Y. Fang, Z. Qu, J. Lu, M. Cheng, and C. Jiang. 2020. AnisoMPM: animating anisotropic damage mechanics. ACM Trans. Graph. 39, 4, Article 37 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. 2019. CD-MPM: continuum damage material point methods for dynamic fracture animation. ACM Trans. Graph. 38, 4, Article 119 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. S. Yang, X. He, H. Wang, S. Li, G. Wang, E. Wu, and K. Zhou. 2016a. Enriching SPH simulation by approximate capillary waves. In Symp Comp Anim. 29--36.Google ScholarGoogle Scholar
  89. T. Yang, J. Chang, M. C. Lin, R. R. Martin, J. J. Zhang, and S.-M. Hu. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Transactions on Graphics (TOG) 36, 6 (2017), 224.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. T. Yang, M. C. Lin, R. R. Martin, J. Chang, and S.-M. Hu. 2016b. Versatile Interactions at Interfaces for SPH-Based Simulations (SCA '16). Eurographics Association, Goslar, DEU, 57--66.Google ScholarGoogle Scholar
  91. T. Young. 1805. III. An essay on the cohesion of fluids. Phil Trans Royal Soc London 95 (1805), 65--87. arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1805.0005 Google ScholarGoogle ScholarCross RefCross Ref
  92. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1--160:20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. T. Zhang, J. Shi, C. Wang, H. Qin, and C. Li. 2017. Robust Gas Condensation Simulation with SPH based on Heat Transfer. In Pacific Graphics Short Papers, Jernej Barbic, Wen-Chieh Lin, and Olga Sorkine-Hornung (Eds.). The Eurographics Association, 27--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. W. Zheng, B. Zhu, B. Kim, and R. Fedkiw. 2015. A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension. J Comp Phys 280 (2015), 96--142.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. B. Zhu, E. Quigley, M. Cong, J. Solomon, and R. Fedkiw. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans Graph (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 40, Issue 4
            August 2021
            2170 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/3450626
            Issue’s Table of Contents

            Copyright © 2021 Owner/Author

            Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 19 July 2021
            Published in tog Volume 40, Issue 4

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader