Abstract
We present a novel Material Point Method (MPM) discretization of surface tension forces that arise from spatially varying surface energies. These variations typically arise from surface energy dependence on temperature and/or concentration. Furthermore, since the surface energy is an interfacial property depending on the types of materials on either side of an interface, spatial variation is required for modeling the contact angle at the triple junction between a liquid, solid and surrounding air. Our discretization is based on the surface energy itself, rather than on the associated traction condition most commonly used for discretization with particle methods. Our energy based approach automatically captures surface gradients without the explicit need to resolve them as in traction condition based approaches. We include an implicit discretization of thermomechanical material coupling with a novel particle-based enforcement of Robin boundary conditions associated with convective heating. Lastly, we design a particle resampling approach needed to achieve perfect conservation of linear and angular momentum with Affine-Particle-In-Cell (APIC) [Jiang et al. 2015]. We show that our approach enables implicit time stepping for complex behaviors like the Marangoni effect and hydrophobicity/hydrophilicity. We demonstrate the robustness and utility of our method by simulating materials that exhibit highly diverse degrees of surface tension and thermomechanical effects, such as water, wine and wax.
Supplemental Material
- A. Adamson and A. Gast. 1967. Physical chemistry of surfaces. Vol. 150. Interscience Publishers New York.Google Scholar
- R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles. IEEE Trans Vis Comp Graph 18, 8 (Aug. 2012), 1202--1214.Google Scholar
Digital Library
- O. Azencot, O. Vantzos, M. Wardetzky, M. Rumpf, and M. Ben-Chen. 2015. Functional thin films on surfaces. In Proc 14th ACM SIGGRAPH/Eurograph Symp Comp Anim. 137--146.Google Scholar
- C. Batty, A. Uribe, B. Audoly, and E. Grinspun. 2012. Discrete viscous sheets. ACM Trans Graph (TOG) 31, 4 (2012), 1--7.Google Scholar
Digital Library
- T. Belytschko, W. Liu, B. Moran, and K. Elkhodary. 2013. Nonlinear finite elements for continua and structures. John Wiley and sons.Google Scholar
- J. Brackbill, D. Kothe, and C. Zemach. 1992. A continuum method for modeling surface tension. J Comp Phys 100, 2 (1992), 335--354.Google Scholar
Digital Library
- G. Buscaglia and R. Ausas. 2011. Variational formulations for surface tension, capillarity and wetting. Comp Meth App Mech Eng 200, 45-46 (2011), 3011--3025.Google Scholar
Cross Ref
- A.B.D. Cassie and S. Baxter. 1944. Wettability of porous surfaces. Transactions of the Faraday society 40 (1944), 546--551.Google Scholar
Cross Ref
- C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D. Nowrouzezahrai, and T. Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans Graph 36, 4 (2017), 1--12.Google Scholar
Digital Library
- J. Chen, V. Kala, A. Marquez-Razon, E. Gueidon, D. Hyde, and J. Teran. 2021. Supplementary Technical Document. Technical Report.Google Scholar
- Y.-L. Chen, J. Meier, B. Solenthaler, and V.C. Azevedo. 2020. An Extended Cut-Cell Method for Sub-Grid Liquids Tracking with Surface Tension. ACM Trans Graph 39, 6, Article 169 (Nov. 2020), 13 pages. Google Scholar
Digital Library
- E. Chernyaev. 1995. Marching cubes 33: Construction of topologically correct isosurfaces. Technical Report.Google Scholar
- P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O'Brien. 2013. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Transactions on Graphics (TOG) 32, 2 (2013), 17.Google Scholar
Digital Library
- M. Corsini, P. Cignoni, and R. Scopigno. 2012. Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes. IEEE Trans Vis Comp Graph 18, 6 (2012), 914--924. Google Scholar
Digital Library
- F. Da, C. Batty, C. Wojtan, and E. Grinspun. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans Graph (SIGGRAPH 2015) (2015).Google Scholar
- F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. 2016. Surface-only liquids. ACM Trans Graph (TOG) 35, 4 (2016), 1--12.Google Scholar
Digital Library
- G. Daviet and F. Bertails-Descoubes. 2016. A Semi-implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans Graph 35, 4 (2016), 102:1--102:13.Google Scholar
Digital Library
- C. C. de Langavant, A. Guittet, M. Theillard, F. Temprano-Coleto, and F. Gibou. 2017. Level-set simulations of soluble surfactant driven flows. J Comp Phys 348 (2017), 271--297.Google Scholar
Digital Library
- A. de Vaucorbeil, V. P. Nguyen, S. Sinaie, and J. Y. Wu. 2020. Chapter Two - Material point method after 25 years: Theory, implementation, and applications. Advances in Applied Mechanics, Vol. 53. Elsevier, 185 -- 398. Google Scholar
Cross Ref
- M. Ding, X. Han, S. Wang, T. Gast, and J. Teran. 2019. A thermomechanical material point method for baking and cooking. ACM Trans Graph 38, 6 (2019), 192.Google Scholar
Digital Library
- Y. Dukler, H. Ji, C. Falcon, and A. L Bertozzi. 2020. Theory for undercompressive shocks in tears of wine. Phys Rev Fluids 5, 3 (2020), 034002.Google Scholar
Cross Ref
- E. Edwards and R. Bridson. 2012. A high-order accurate Particle-In-Cell method. Int J Numer Meth Eng 90 (2012), 1073--1088.Google Scholar
Cross Ref
- Y. Fang, M. Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans Graph 38, 4 (2019), 1--13.Google Scholar
Digital Library
- R. Farahi, A. Passian, T. Ferrell, and T. Thundat. 2004. Microfluidic manipulation via Marangoni forces. Applied Phys Let 85, 18 (2004), 4237--4239.Google Scholar
Cross Ref
- Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Trans Graph 37, 4 (2018), 51:1--51:16. Google Scholar
Digital Library
- Y. Fei, H. Maia, C. Batty, C. Zheng, and E. Grinspun. 2017. A multi-scale model for simulating liquid-hair interactions. ACM Trans. Graph. 36, 4 (2017), 56:1--56:17. Google Scholar
Digital Library
- M. M. Francois, J. M. Sicilian, and D. B. Kothe. 2006. Modeling of thermocapillary forces within a volume tracking algorithm. In Modeling of Casting, Welding and Advanced Solidification Processes-XI (Opio, France). 935--942.Google Scholar
- C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. 2017. A Polynomial Particle-in-cell Method. ACM Trans Graph 36, 6 (Nov. 2017), 222:1--222:12.Google Scholar
Digital Library
- M. Gao, A. Tampubolon, C. Jiang, and E. Sifakis. 2017b. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans Graph 36, 6 (2017), 223:1--223:12. Google Scholar
Digital Library
- Y. Gao, S. Li, L. Yang, H. Qin, and A. Hao. 2017a. An efficient heat-based model for solid-liquid-gas phase transition and dynamic interaction. Graphical Models 94 (2017), 14 -- 24. Google Scholar
Digital Library
- I. Georgiev, T. Ize, M. Farnsworth, R. Montoya-Vozmediano, A. King, B. Van Lommel, A. Jimenez, O. Anson, S. Ogaki, E. Johnston, A. Herubel, D. Russell, F. Servant, and M. Fajardo. 2018. Arnold: A brute-force production path tracer. ACM Transactions on Graphics (TOG) 37, 3 (2018), 1--12.Google Scholar
Digital Library
- C. Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. 2020a. An Implicit Compressible SPH Solver for Snow Simulation. ACM Trans Graph 39, 4, Article 36 (July 2020), 16 pages. Google Scholar
Digital Library
- C. Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. 2020b. An implicit compressible SPH solver for snow simulation. ACM Trans Graph (TOG) 39, 4 (2020), 36--1.Google Scholar
Digital Library
- O. Gonzalez and A. Stuart. 2008. A first course in continuum mechanics. Cambridge University Press.Google Scholar
- Y. Gu and Y.-H. Yang. 2016. Physics Based Boiling Bubble Simulation. In SIGGRAPH ASIA 2016 Technical Briefs (Macau) (SA '16). Association for Computing Machinery, New York, NY, USA, Article 5, 4 pages. Google Scholar
Digital Library
- Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method for thin shells with frictional contact. ACM Trans Graph 37, 4 (2018), 147. Google Scholar
Digital Library
- F. Harlow and E. Welch. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fl 8, 12 (1965), 2182--2189.Google Scholar
Cross Ref
- H. Hochstetter and A. Kolb. 2017. Evaporation and Condensation of SPH-Based Fluids. In Proc ACM SIGGRAPH/Eurographics Symp Comp Anim (Los Angeles, California) (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 3, 9 pages. Google Scholar
Digital Library
- M. Hopp-Hirschler, M. S. Shadloo, and U. Nieken. 2018. A Smoothed Particle Hydrodynamics approach for thermo-capillary flows. Comp Fluids 176 (2018), 1 -- 19. Google Scholar
Cross Ref
- H. Hu and P. Eberhard. 2017. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics. Comp Part Mech 4 (Oct 2017), 473--486. Issue 4. Google Scholar
Cross Ref
- W. Huang, J. Iseringhausen, T. Kneiphof, Z. Qu, C. Jiang, and M.B. Hullin. 2020. Chemomechanical Simulation of Soap Film Flow on Spherical Bubbles. ACM Trans Graph 39, 4, Article 41 (July 2020), 14 pages. Google Scholar
Digital Library
- D.A.B. Hyde, S.W. Gagniere, A. Marquez-Razon, and J. Teran. 2020. An Implicit Updated Lagrangian Formulation for Liquids with Large Surface Energy. ACM Trans Graph 39, 6, Article 183 (Nov. 2020), 13 pages. Google Scholar
Digital Library
- G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 131--140.Google Scholar
- S. Ishida, P. Synak, F. Narita, T. Hachisuka, and C. Wojtan. 2020. A Model for Soap Film Dynamics with Evolving Thickness. ACM Trans Graph 39, 4, Article 31 (July 2020), 11 pages. Google Scholar
Digital Library
- C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017), 152.Google Scholar
Digital Library
- C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-In-Cell Method. ACM Trans Graph 34, 4 (2015), 51:1--51:10.Google Scholar
Digital Library
- C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The Material Point Method for Simulating Continuum Materials. In ACM SIGGRAPH 2016 Course. 24:1--24:52.Google Scholar
- R. E. Johnson Jr. and R. H. Dettre. 1964. Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem 68, 7 (1964), 1744--1750.Google Scholar
Cross Ref
- G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager Elastoplasticity for Sand Animation. ACM Trans Graph 35, 4 (2016), 103:1--103:12.Google Scholar
Digital Library
- D. Langbein. 2002. Capillary surfaces: shape - stability - dynamics, in particular under weightlessness. Vol. 178. Springer Science & Business Media.Google Scholar
- T. Lenaerts and P. Dutré. 2009. An architecture for unified SPH simulations. CW Reports (2009).Google Scholar
- W. Li, D. Liu, M. Desbrun, J. Huang, and X. Liu. 2020. Kinetic-based Multiphase Flow Simulation. IEEE Trans Vis Comp Graph (2020).Google Scholar
- F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-Way Coupled SPH and Particle Level Set Fluid Simulation. IEEE Trans Visu Comp Graph 14, 4 (2008), 797--804.Google Scholar
Digital Library
- T. Maeshima, Y. Kim, and T. I. Zohdi. 2020. Particle-scale numerical modeling of thermomechanical phenomena for additive manufacturing using the material point method. Computational Particle Mechanics (2020). Google Scholar
Cross Ref
- J. Monaghan. 1992. Smoothed particle hydrodynamics. Ann Rev Astron Astroph 30, 1 (1992), 543--574.Google Scholar
Cross Ref
- R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1--173:10.Google Scholar
Digital Library
- S. Nas and G. Tryggvason. 2003. Thermocapillary interaction of two bubbles or drops. Int J Multiphase Flow 29, 7 (2003), 1117--1135. Google Scholar
Cross Ref
- R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. 2002. Shape Distributions. ACM Trans. Graph. 21, 4 (Oct. 2002), 807--832. Google Scholar
Digital Library
- A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares. 2009. Particle-based viscoplastic fluid/solid simulation. Computer-Aided Design 41, 4 (2009), 306--314.Google Scholar
Digital Library
- M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. Guibas. 2005. Meshless animation of fracturing solids. ACM Trans Graph 24, 3 (2005), 957--964. Google Scholar
Digital Library
- S. Pirk, M. Jarząbek, T. Hädrich, D.L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. 36, 6, Article 197 (Nov. 2017), 12 pages. Google Scholar
Digital Library
- D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157--163.Google Scholar
- R. Rioboo, C. Tropea, and M. Marengo. 2001. Outcomes from a Drop Impact on Solid Surfaces. Atomization and Sprays 11, 2 (2001).Google Scholar
- M. A. Russell. 2018. A Smoothed Particle Hydrodynamics Model for the Simulation of Laser Fusion Additive Manufacturing Processes. Ph.D. Dissertation. UC Berkeley.Google Scholar
- C. Schreck and C. Wojtan. 2020. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum - Eurographics 2020 39, 2 (2020).Google Scholar
- L. Scriven and C. Sternling. 1960. The marangoni effects. Nature 187, 4733 (1960), 186--188.Google Scholar
- A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent invertible elasticity. In Proc Symp Comp Anim. 25--32.Google Scholar
Digital Library
- A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A Material Point Method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1--102:10.Google Scholar
Digital Library
- A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1--138:11.Google Scholar
Digital Library
- D. Sulsky, Z. Chen, and H. Schreyer. 1994. A particle method for history-dependent materials. Comp Meth App Mech Eng 118, 1 (1994), 179--196.Google Scholar
Cross Ref
- M. Sussman and M. Ohta. 2009. A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J Sci Comp 31, 4 (2009), 2447--2471.Google Scholar
Digital Library
- A. Tartakovsky and P. Meakin. 2005. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72 (Aug 2005), 026301. Issue 2. Google Scholar
Cross Ref
- D. Terzopoulos, J. Platt, and K. Fleischer. 1991. Heating and melting deformable models. The Journal of Visualization and Computer Animation 2, 2 (1991), 68--73.Google Scholar
Cross Ref
- J. Thomson. 1855. XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. London, Edinburgh, and Dublin Phil Mag J Sci 10, 67 (1855), 330--333.Google Scholar
Cross Ref
- N. Thürey, C. Wojtan, M. Gross, and G. Turk. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans Graph (TOG) 29, 4 (2010), 1--10.Google Scholar
Digital Library
- M. Tong and D. J. Browne. 2014. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. Int J Heat Mass Transfer 73 (2014), 284 -- 292. Google Scholar
Cross Ref
- D. C. Venerus and D. N. Simavilla. 2015. Tears of wine: New insights on an old phenomenon. Scientific reports 5 (2015), 16162.Google Scholar
- C. Wang, Q. Zhang, H. Xiao, and Q. Shen. 2012. Simulation of multiple fluids with solidliquid phase transition. Comp Anim Virtual Worlds 23, 3-4 (2012), 279--289. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1457 Google Scholar
Digital Library
- H. Wang, Y. Jin, A. Luo, X. Yang, and B. Zhu. 2020a. Codimensional Surface Tension Flow Using Moving-Least-Squares Particles. ACM Trans Graph 39, 4, Article 42 (July 2020), 16 pages. Google Scholar
Digital Library
- H. Wang, G. Miller, and G. Turk. 2007. Solving General Shallow Wave Equations on Surfaces (SCA '07). Eurographics Association, Goslar, DEU, 229--238.Google Scholar
- H. Wang, P. J. Mucha, and G. Turk. 2005. Water Drops on Surfaces. ACM Tran. Graph 24, 3 (July 2005), 921--929. Google Scholar
Digital Library
- S. Wang, M. Ding, T. Gast, L. Zhu, S. Gagniere, C. Jiang, and J. Teran. 2019. Simulation and Visualization of Ductile Fracture with the Material Point Method. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 2, 18.Google Scholar
Digital Library
- X. Wang, M. Li, Y. Fang, X. Zhang, M. Gao, M. Tang, D. Kaufman, and C. Jiang. 2020b. Hierarchical optimization time integration for CFL-rate MPM stepping. ACM Trans Graph (TOG) 39, 3 (2020), 1--16.Google Scholar
Digital Library
- X. Wang, Y. Qiu, S.R. Slattery, Y. Fang, M. Li, S.-C. Zhu, Y. Zhu, M. Tang, D. Manocha, and C. Jiang. 2020c. A Massively Parallel and Scalable Multi-GPU Material Point Method. ACM Trans Graph 39, 4, Article 30 (July 2020), 15 pages. Google Scholar
Digital Library
- C. Wojtan, N. Thürey, M. Gross, and G. Turk. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans Graph 29, 4 (2010), 50:1--50:8. Google Scholar
Digital Library
- J. Wolper, Y. Chen, M. Li, Y. Fang, Z. Qu, J. Lu, M. Cheng, and C. Jiang. 2020. AnisoMPM: animating anisotropic damage mechanics. ACM Trans. Graph. 39, 4, Article 37 (2020).Google Scholar
Digital Library
- J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. 2019. CD-MPM: continuum damage material point methods for dynamic fracture animation. ACM Trans. Graph. 38, 4, Article 119 (2019).Google Scholar
Digital Library
- S. Yang, X. He, H. Wang, S. Li, G. Wang, E. Wu, and K. Zhou. 2016a. Enriching SPH simulation by approximate capillary waves. In Symp Comp Anim. 29--36.Google Scholar
- T. Yang, J. Chang, M. C. Lin, R. R. Martin, J. J. Zhang, and S.-M. Hu. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Transactions on Graphics (TOG) 36, 6 (2017), 224.Google Scholar
Digital Library
- T. Yang, M. C. Lin, R. R. Martin, J. Chang, and S.-M. Hu. 2016b. Versatile Interactions at Interfaces for SPH-Based Simulations (SCA '16). Eurographics Association, Goslar, DEU, 57--66.Google Scholar
- T. Young. 1805. III. An essay on the cohesion of fluids. Phil Trans Royal Soc London 95 (1805), 65--87. arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1805.0005 Google Scholar
Cross Ref
- Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1--160:20.Google Scholar
Digital Library
- T. Zhang, J. Shi, C. Wang, H. Qin, and C. Li. 2017. Robust Gas Condensation Simulation with SPH based on Heat Transfer. In Pacific Graphics Short Papers, Jernej Barbic, Wen-Chieh Lin, and Olga Sorkine-Hornung (Eds.). The Eurographics Association, 27--32. Google Scholar
Digital Library
- W. Zheng, B. Zhu, B. Kim, and R. Fedkiw. 2015. A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension. J Comp Phys 280 (2015), 96--142.Google Scholar
Digital Library
- B. Zhu, E. Quigley, M. Cong, J. Solomon, and R. Fedkiw. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans Graph (TOG) 33, 4 (2014), 1--11.Google Scholar
Digital Library
Index Terms
A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients
Recommendations
An implicit updated lagrangian formulation for liquids with large surface energy
We present an updated Lagrangian discretization of surface tension forces for the simulation of liquids with moderate to extreme surface tension effects. The potential energy associated with surface tension is proportional to the surface area of the ...
Breaching the capillary time-step constraint using a coupled VOF method with implicit surface tension
AbstractThe capillary time-step constraint is the dominant limitation on the applicable time-step in many simulations of interfacial flows with surface tension and, consequently, governs the execution time of these simulations. We propose a ...
Highlights- Fully-coupled pressure-based algorithm for interfacial flows with implicitly coupled VOF method.
Energy Considerations for Multiphase Fluids with Variable Density and Surface Tension
We examine the energy budget associated with a multiphase fluid system in the presence of a fluid-fluid interface with variable surface tension. Such an interface is found in thermo-capillary systems and also describes solutions of miscible liquids ...





Comments