skip to main content
research-article
Open Access

Optimizing dyadic nets

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We explore the space of (0, m, 2)-nets in base 2 commonly used for sampling. We present a novel constructive algorithm that can exhaustively generate all nets --- up to m-bit resolution --- and thereby compute the exact number of distinct nets. We observe that the construction algorithm holds the key to defining a transformation operation that lets us transform one valid net into another one. This enables the optimization of digital nets using arbitrary objective functions. For example, we define an analytic energy function for blue noise, and use it to generate nets with high-quality blue-noise frequency power spectra. We also show that the space of (0, 2)-sequences is significantly smaller than nets with the same number of points, which drastically limits the optimizability of sequences.

Skip Supplemental Material Section

Supplemental Material

3450626.3459880.mp4

References

  1. A. G. M. Ahmed, J. Guo, D. M. Yan, J. Y. Franceschia, X. Zhang, and O. Deussen. 2017a. A Simple Push-Pull Algorithm for Blue-Noise Sampling. IEEE Transactions on Visualization and Computer Graphics 23, 12 (Dec. 2017), 2496--2508. Google ScholarGoogle ScholarCross RefCross Ref
  2. Abdalla G. M. Ahmed, Till Niese, Hui Huang, and Oliver Deussen. 2017b. An Adaptive Point Sampler on a Regular Lattice. ACM Trans. Graph. 36, 4, Article 138 (July 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Abdalla G. M. Ahmed, Hélène Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei Guo, Dong-Ming Yan, Hui Huang, and Oliver Deussen. 2016. Low-Discrepancy Blue-Noise Sampling. ACM Trans. Graph. 35, 6, Article 247 (Nov. 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Abdalla G. M. Ahmed and Peter Wonka. 2020. Screen-Space Blue-Noise Diffusion of Monte Carlo Sampling Error via Hierarchical Ordering of Pixels. ACM Trans. Graph. 39, 6, Article 244 (Nov. 2020), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. I.A. Antonov and V.M. Saleev. 1979. An Economic Method of Computing LP-sequences. U. S. S. R. Comput. Math. and Math. Phys. 19, 1 (1979), 252--256. Google ScholarGoogle ScholarCross RefCross Ref
  6. Michael Balzer, Thomas Schlömer, and Oliver Deussen. 2009. Capacity-Constrained Point Distributions: A Variant of Lloyd's Method. ACM Trans. Graph. 28, 3, Article 86 (July 2009), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. Bridson. 2007. Fast Poisson-Disk Sampling in Arbitrary Dimensions. In ACM SIGGRAPH 2007 Sketches.Google ScholarGoogle Scholar
  8. Brent Burley. 2020. Practical Hash-Based Owen Scrambling. Journal of Computer Graphics Techniques (JCGT) 10, 4 (29 December 2020), 1--20. http://jcgt.org/published/0009/04/01/Google ScholarGoogle Scholar
  9. Zhonggui Chen, Zhan Yuan, Yi-King Choi, Ligang Liu, and Wenping Wang. 2012. Variational Blue Noise Sampling. IEEE Transactions on Visualization and Computer Graphics 18, 10 (Oct. 2012), 1784--1796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Per Christensen, Andrew Kensler, and Charlie Kilpatrick. 2018. Progressive Multi-Jittered Sample Sequences. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 21--33.Google ScholarGoogle Scholar
  11. David Coeurjolly and Hélène Perrier. 2019. Uni(corn|form) Tool Kit. https://utkteam.github.io/utk/, as of 2021-01-27.Google ScholarGoogle Scholar
  12. Robert L. Cook. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph. 5, 1 (Jan. 1986), 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Roy Cranley and Thomas NL Patterson. 1976. Randomization of Number-Theoretic Methods for Multiple Integration. SIAM J. Numer. Anal. 13, 6 (1976), 904--914.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Josef Dick and Friedrich Pillichshammer. 2010. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press. Google ScholarGoogle ScholarCross RefCross Ref
  15. Mark A. Z. Dippé and Erling Henry Wold. 1985. Antialiasing through Stochastic Sampling. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '85). ACM, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Daniel Dunbar and Greg Humphreys. 2006. A Spatial Data Structure for Fast Poisson-Disk Sample Generation. ACM Trans. Graph. 25, 3 (July 2006), 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fredo Durand. 2011. A Frequency Analysis of Monte Carlo and Other Numerical Integration Schemes. MIT CSAIL Tech. Rep. TR-2011-052 (2011).Google ScholarGoogle Scholar
  18. Mohamed S. Ebeida, Muhammad A. Awad, Xiaoyin Ge, Ahmed H. Mahmoud, Scott A. Mitchell, Patrick M. Knupp, and Li-Yi Wei. 2014. Improving Spatial Coverage while Preserving the Blue Noise of Point Sets. Computer-Aided Design 46, Supplement C (2014), 25--36. 2013 SIAM Conference on Geometric and Physical Modeling. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mohamed S. Ebeida, Andrew A. Davidson, Anjul Patney, Patrick M. Knupp, Scott A. Mitchell, and John D. Owens. 2011. Efficient Maximal Poisson-Disk Sampling. ACM Trans. Graph. 30, 4, Article 49 (July 2011), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mohamed S. Ebeida, Scott A. Mitchell, Anjul Patney, Andrew A. Davidson, and John D. Owens. 2012. A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions. Comp. Graph. Forum 31, 2pt4 (May 2012), 785--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. 1997. The Farthest-Point Strategy for Progressive Image Sampling. Trans. Img. Proc. 6, 9 (Sept. 1997), 1305--1315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Raanan Fattal. 2011. Blue-Noise Point Sampling Using Kernel Density Model. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH '11). ACM, Article 48, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Henri Faure and Shu Tezuka. 2002. Another Random Scrambling of Digital (t,s)-Sequences. In Monte Carlo and Quasi-Monte Carlo Methods 2000, Kai-Tai Fang, Harald Niederreiter, and Fred J. Hickernell (Eds.). Springer, 242--256.Google ScholarGoogle Scholar
  24. Manuel N. Gamito and Steve C. Maddock. 2009. Accurate Multidimensional Poisson-Disk Sampling. ACM Trans. Graph. 29, 1, Article 8 (Dec. 2009), 19 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Iliyan Georgiev and Marcos Fajardo. 2016. Blue-Noise Dithered Sampling. In ACM SIGGRAPH 2016 Talks. 1--1.Google ScholarGoogle Scholar
  26. Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun. 2012. Blue Noise through Optimal Transport. ACM Trans. Graph. 31, 6, Article 171 (Nov. 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Leonhard Grünschloß, Johannes Hanika, Ronnie Schwede, and Alexander Keller. 2008. (t, m, s)-Nets and Maximized Minimum Distance. In Monte Carlo and Quasi-Monte Carlo Methods 2006, Alexander Keller, Stefan Heinrich, and Harald Niederreiter (Eds.). Springer, 397--412.Google ScholarGoogle Scholar
  28. Leonhard Grünschloß and Alexander Keller. 2009. (t, m, s)-Nets and Maximized Minimum Distance, Part II. In Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer, 395--409.Google ScholarGoogle Scholar
  29. Leonhard Grünschloß, Matthias Raab, and Alexander Keller. 2012. Enumerating Quasi-Monte Carlo Point Sequences in Elementary Intervals. In Monte Carlo and Quasi-Monte Carlo Methods 2010, Leszek Plaskota and Henryk Woźniakowski (Eds.). Springer, 399--408.Google ScholarGoogle Scholar
  30. Kenneth M. Hanson. 2003. Quasi-Monte Carlo: Halftoning in High Dimensions?. In Computational Imaging, Charles A. Bouman and Robert L. Stevenson (Eds.), Vol. 5016. International Society for Optics and Photonics, SPIE, 161 -- 172. Google ScholarGoogle ScholarCross RefCross Ref
  31. Kenneth M Hanson. 2005. Halftoning and Quasi-Monte Carlo. Los Alamos National Library (2005), 430--442.Google ScholarGoogle Scholar
  32. Daniel Heck, Thomas Schlömer, and Oliver Deussen. 2013. Blue Noise Sampling with Controlled Aliasing. ACM Trans. Graph. 32, 3, Article 25 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Eric Heitz and Laurent Belcour. 2019. Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 149--158.Google ScholarGoogle Scholar
  34. Eric Heitz, Laurent Belcour, V. Ostromoukhov, David Coeurjolly, and Jean-Claude Iehl. 2019. A Low-Discrepancy Sampler That Distributes Monte Carlo Errors as a Blue Noise in Screen Space. In ACM SIGGRAPH 2019 Talks (Los Angeles, California) (SIGGRAPH '19). Association for Computing Machinery, Article 68, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Andrew Helmer. 2020. A C++ implementation of Progressive Multi-Jittered Sample Sequences. https://github.com/Andrew-Helmer/pmj-cpp/tree/master/sample_sequences, as of 2021-04-23.Google ScholarGoogle Scholar
  36. Wojciech Jarosz, Afnan Enayet, Andrew Kensler, Charlie Kilpatrick, and Per Christensen. 2019. Orthogonal Array Sampling for Monte Carlo Rendering. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 135--147.Google ScholarGoogle Scholar
  37. Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015. Blue Noise Sampling Using an SPH-Based Method. ACM Trans. Graph. 34, 6, Article 211 (2015), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Thouis R Jones. 2006. Efficient Generation of Poisson-Disk Sampling Patterns. Journal of graphics, gpu, and game tools 11, 2 (2006), 27--36.Google ScholarGoogle ScholarCross RefCross Ref
  39. Alexander Keller. 2006. Myths of Computer Graphics. In Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, 217--243.Google ScholarGoogle Scholar
  40. Alexander Keller. 2013. Quasi-Monte Carlo Image Synthesis in a Nutshell. In Monte Carlo and Quasi-Monte Carlo Methods 2012, Josef Dick, Frances Y. Kuo, Gareth W. Peters, and Ian H. Sloan (Eds.). Springer, 213--249.Google ScholarGoogle Scholar
  41. Alexander Keller, Iliyan Georgiev, Abdalla Ahmed, Per Christensen, and Matt Pharr. 2019. My Favorite Samples. In ACM SIGGRAPH 2019 Courses (Los Angeles, California) (SIGGRAPH '19). Association for Computing Machinery, Article 15, 271 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Andrew Kensler. 2013. Correlated Multi-Jittered Sampling. Pixar Technical Memo 13-01 7 (2013), 86--112.Google ScholarGoogle Scholar
  43. Thomas Kollig and Alexander Keller. 2002. Efficient Multidimensional Sampling. In Computer Graphics Forum, Vol. 21. 557--563.Google ScholarGoogle ScholarCross RefCross Ref
  44. Lauwerens Kuipers and Harald Niederreiter. 1974. Uniform Distribution of Sequences. John Wiley & Sons. http://opac.inria.fr/record=b1083239 A Wiley-Interscience publication.Google ScholarGoogle Scholar
  45. Ares Lagae and Philip Dutré. 2008. A Comparison of Methods for Generating Poisson-Disk Distributions. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 114--129.Google ScholarGoogle Scholar
  46. G Larcher and F Pillichshammer. 2003. Sums of Distances to the Nearest Integer and the Discrepancy of Digital Nets. Acta Arithmetica 106 (2003), 379--408.Google ScholarGoogle ScholarCross RefCross Ref
  47. Michael McCool and Eugene Fiume. 1992. Hierarchical Poisson-Disk Sampling Distributions. In Proceedings of the Conference on Graphics Interface '92 (Vancouver, British Columbia, Canada). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 94--105. http://dl.acm.org/citation.cfm?id=155294.155306Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Don P. Mitchell. 1991. Spectrally Optimal Sampling for Distribution Ray Tracing. SIGGRAPH Comput. Graph. 25, 4 (July 1991), 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Don P Mitchell. 1992. Ray Tracing and Irregularities of Distribution. In Third Eurographics Workshop on Rendering. 61--69.Google ScholarGoogle Scholar
  50. Scott A. Mitchell, Mohamed S. Ebeida, Muhammad A. Awad, Chonhyon Park, Anjul Patney, Ahmad A. Rushdi, Laura P. Swiler, Dinesh Manocha, and Li-Yi Wei. 2018. Spoke-Darts for High-Dimensional Blue-Noise Sampling. ACM Trans. Graph. 37, 2, Article 22 (May 2018), 20 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Harald Niederreiter. 1987. Point Sets and Sequences with Small Discrepancy. Monatshefte für Mathematik 104, 4 (1987), 273--337.Google ScholarGoogle ScholarCross RefCross Ref
  52. Harald Niederreiter. 1988. Low-Discrepancy and Low-Dispersion Sequences. Journal of Number Theory 30, 1 (1988), 51 -- 70. Google ScholarGoogle ScholarCross RefCross Ref
  53. Harald Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM.Google ScholarGoogle Scholar
  54. Harald Niederreiter. 2005. Constructions of (t,m,s)-Nets and (t,s)-Sequences. Finite Fields and Their Applications 11, 3 (2005), 578--600. Ten Year Anniversary Edition! Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Art B. Owen. 1995. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Harald Niederreiter and Peter Jau-Shyong Shiue (Eds.). Springer, 299--317.Google ScholarGoogle Scholar
  56. Art B. Owen. 1998. Scrambling Sobol'and Niederreiter-Xing Points. Journal of Complexity 14, 4 (1998), 466--489.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Art B. Owen. 2003. Variance with Alternative Scramblings of Digital Nets. ACM Trans. Model. Comput. Simul. 13, 4 (Oct. 2003), 363--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. A. Cengiz Öztireli. 2016. Integration with Stochastic Point Processes. ACM Trans. Graph. 35, 5, Article 160 (Aug. 2016), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. A. Cengiz Öztireli. 2020. A Comprehensive Theory and Variational Framework for Anti-aliasing Sampling Patterns. Computer Graphics Forum 39, 4 (2020), 133--148. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14059 Google ScholarGoogle ScholarCross RefCross Ref
  60. A. Cengiz Öztireli, Marc Alexa, and Markus Gross. 2010. Spectral Sampling of Manifolds. ACM Transactions on Graphics (TOG) 29, 6 (2010), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. A. Cengiz Öztireli and Markus Gross. 2012. Analysis and Synthesis of Point Distributions Based on Pair Correlation. ACM Trans. Graph. 31, 6, Article 170 (Nov. 2012), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Hélène Perrier, David Coeurjolly, Feng Xie, Matt Pharr, Pat Hanrahan, and Victor Ostromoukhov. 2018. Sequences with Low-Discrepancy Blue-Noise 2-D Projections. Computer Graphics Forum (Proceedings of Eurographics) 37, 2 (2018), 339--353.Google ScholarGoogle ScholarCross RefCross Ref
  63. Matt Pharr. 2019. Efficient Generation of Points that Satisfy Two-Dimensional Elementary Intervals. Journal of Computer Graphics Techniques (JCGT) 8, 1 (27 February 2019), 56--68. http://jcgt.org/published/0008/01/04/Google ScholarGoogle Scholar
  64. Matt Pharr and Greg Humphreys. 2010. Physically-Based Rendering: from Theory to Implementation (2nd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google ScholarGoogle Scholar
  65. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor Ostromoukhov. 2015. Variance Analysis for Monte Carlo Integration. ACM Trans. Graph. 34, 4, Article 124 (July 2015), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Ravi Ramamoorthi, John Anderson, Mark Meyer, and Derek Nowrouzezahrai. 2012. A Theory of Monte Carlo Visibility Sampling. ACM Trans. Graph. 31, 5, Article 121 (2012), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Bernhard Reinert, Tobias Ritschel, Hans-Peter Seidel, and Iliyan Georgiev. 2016. Projective Blue-Noise Sampling. Computer Graphics Forum 35, 1 (2016), 285--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Thomas Schlömer, Daniel Heck, and Oliver Deussen. 2011. Farthest-Point Optimized Point Sets with Maximized Minimum Distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics (Vancouver, British Columbia, Canada) (HPG '11). ACM, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Thomas Schlömer and Oliver Deussen. 2011. Accurate Spectral Analysis of Two-Dimensional Point Sets. Journal of Graphics, GPU, and Game Tools 15, 3 (2011), 152--160. arXiv:http://dx.doi.org/10.1080/2151237X.2011.609773 Google ScholarGoogle ScholarCross RefCross Ref
  71. Claude E Shannon. 1948. A Mathematical Theory of Communication. The Bell System Technical Journal 27, 3 (1948), 379--423.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Peter Shirley. 1991. Discrepancy as a Quality Measure for Sample Distributions. In Proc. Eurographics '91, Vol. 91. 183--194.Google ScholarGoogle Scholar
  73. Il'ya Meerovich Sobol'. 1967. On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 7, 4 (1967), 784--802.Google ScholarGoogle Scholar
  74. Sergej Stoppel and Stefan Bruckner. 2019. LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 110--124.Google ScholarGoogle Scholar
  75. Kartic Subr and Jan Kautz. 2013. Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration. ACM Trans. Graph. 32, 4, Article 128 (2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Robert Ulichney. 1987. Digital Halftoning. MIT Press, Cambridge, MA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. R.A. Ulichney. 1988. Dithering with Blue Noise. Proc. IEEE 76, 1 (Jan 1988), 56--79. Google ScholarGoogle ScholarCross RefCross Ref
  78. Robert A Ulichney. 1993. Void-and-Cluster Method for Dither Array Generation. In IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology. International Society for Optics and Photonics, 332--343.Google ScholarGoogle Scholar
  79. J.G. van der Corput. 1935. Verteilungsfunktionen. Proceedings of the Nederlandse Akademie van Wetenschappen 38 (1935), 813--821.Google ScholarGoogle Scholar
  80. Li-Yi Wei. 2010. Multi-Class Blue-Noise Sampling. ACM Trans. Graph. 29, 4, Article 79 (July 2010), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. SK Zaremba. 1968. The Mathematical Basis of Monte Carlo and Quasi-Monte Carlo Methods. SIAM review 10, 3 (1968), 303--314.Google ScholarGoogle Scholar
  82. Yahan Zhou, Haibin Huang, Li-Yi Wei, and Rui Wang. 2012. Point Sampling with General Noise Spectrum. ACM Trans. Graph. 31, 4, Article 76 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Optimizing dyadic nets

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader