Abstract
We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual effects, they are more and more used as virtual design tools for predicting the shape and deformation of real objects; hence the need for a careful, quantitative validation. Our tests, experimentally verified, are designed to evaluate carefully the predictability of these simulators on various aspects, such as bending elasticity, bend-twist coupling, and frictional contact. We have passed a number of popular codes of Computer Graphics through our benchmarks by defining a rigorous, consistent, and as fair as possible methodology. Our results show that while some popular simulators for plates/shells and frictional contact fail even on the simplest scenarios, more recent ones, as well as well-known codes for rods, generally perform well and sometimes even better than some reference commercial tools of Mechanical Engineering. To make our validation protocols easily applicable to any simulator, we provide an extensive description of our methodology, and we shall distribute all the necessary model data to be compared against.
Supplemental Material
- D. Arnold and F. Brezzi. 1997. Locking free finite element for shells. Math. Comput. 66 (Jan. 1997), 1--14. Google Scholar
Digital Library
- U. Ascher, R. Mattheij, and R. Russell. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM.Google Scholar
- B. Audoly and Y. Pomeau. 2010. Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press.Google Scholar
- D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43--54. http://www.cs.cmu.edu/~baraff/papers/sig98.pdfGoogle Scholar
- D. Baraff, A. Witkin, and M. Kass. 2003. Untangling Cloth. ACM Transactions on Graphics 22, 3 (2003), 862--870.Google Scholar
Digital Library
- A. Bartle, A. Sheffer, V. Kim, D. Kaufman, N. Vining, and F. Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages.Google Scholar
Digital Library
- M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun. 2010. Discrete Viscous Threads. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'10) 29, 4 (2010). http://www.cs.columbia.edu/cg/threadsGoogle Scholar
- M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'08) 27, 3 (2008), 1--12. Google Scholar
Digital Library
- F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L. Lévêque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'06) 25 (2006), 1180--1187. Issue 3. Google Scholar
Digital Library
- B. Bickel, M. Bächer, M. Otaduy, H. Richard Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. Google Scholar
Digital Library
- B. Bickel, M. Bächer, M. Otaduy, W. Matusik, H. Pfister, and M. Gross. 2009. Capture and Modeling of Non-Linear Heterogeneous Soft Tissue. ACM Trans. Graph. 28, 3, Article 89 (July 2009), 9 pages. Google Scholar
Digital Library
- W.G. Bickley. 1934. The heavy elastica. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 113 (1934), 603--622. Google Scholar
Cross Ref
- S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages.Google Scholar
Digital Library
- F. Boyer, V. Lebastard, F. Candelier, and F. Renda. 2020. Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach. IEEE Transactions on Robotics (2020), 1--17. Google Scholar
Cross Ref
- R. Bridson, R. Fedkiw, and R. Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (2002), 594--603. http://www.cs.ubc.ca/~rbridson/docs/cloth2002.pdfGoogle Scholar
Digital Library
- R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '03). 28--36. http://dl.acm.org/citation.cfm?id=846276.846281Google Scholar
Digital Library
- M. Brunetti, J. S. Hale, and C. Maurini. 2018. Fenics-Shells demos. https://fenics-shells.readthedocs.io/en/latest/demo/nonlinear-naghdi-cylindrical/demo_nonlinear-naghdi-cylindrical.py.htmlGoogle Scholar
- E. Buckingham. 1914. On physically similar systems; illustrations of the use of dimensional equations. Physical Review 4, 4 (1914), 345--376.Google Scholar
Cross Ref
- R. Casati and F. Bertails-Descoubes. 2013. Super Space Clothoids. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'13) 32, 4, Article 48 (July 2013), 12 pages. http://www.inrialpes.fr/bipop/people/casati/research.html#ssc. Google Scholar
Digital Library
- R. Charrondière, F. Bertails-Descoubes, S. Neukirch, and V. Romero. 2020. Numerical modeling of inextensible elastic ribbons with curvature-based elements. Computer Methods in Applied Mechanics and Engineering 364 (2020), 112922. Google Scholar
Cross Ref
- H.-Y. Chen, A. Sastry, W. van Rees, and E. Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (July 2018), 13 pages. Google Scholar
Digital Library
- D. Clyde, J. Teran, and R. Tamstorf. 2017. Modeling and Data-Driven Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages. Google Scholar
Digital Library
- E. Coevoet, A. Escande, and C. Duriez. 2019. Soft robots locomotion and manipulation control using FEM simulation and quadratic programming. In RoboSoft 2019 - IEEE International Conference on Soft Robotics. Seoul, South Korea. https://hal.inria.fr/hal-02079151Google Scholar
- S. Coros, S. Martin, B. Thomaszewski, C. Schumacher, R. Sumner, and M. Gross. 2012. Deformable Objects Alive! ACM Trans. Graph. 31, 4, Article 69 (July 2012), 9 pages. Google Scholar
Digital Library
- M. A. Crisfield and G. Jelenić. 1998. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. Royal Society of London, Series A 455, 1983 (1998), 1125--1147.Google Scholar
- Dassault-Systems. 2005. Simulia Abaqus. https://www.3ds.com/products-services/simulia/products/abaqusGoogle Scholar
- G. Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages. Google Scholar
Digital Library
- G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--12.Google Scholar
Digital Library
- A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans. Graph. 32, 6, Article 159 (Nov. 2013), 10 pages. Google Scholar
Digital Library
- M. Dias and B. Audoly. 2015. "Wunderlich, Meet Kirchhoff": A General and Unified Description of Elastic Ribbons and Thin Rods. Journal of Elasticity 119, 1 (Apr 2015), 49--66. Google Scholar
Cross Ref
- E. Doedel, H. Keller, and J.-P. Kernevez. 1991. Numerical Analysis and Control of Bifurcation Problems (I) Bifurcation in Finite Dimensions. International Journal of Bifurcation and Chaos 1, 3 (1991), 493--520.Google Scholar
Cross Ref
- V. Duclaux. 2006. Pulmonary occlusions, eyelid entropion and aneurysm : a physical insight in physiology. Ph.D. Dissertation. Université de Provence - Aix-Marseille I. https://tel.archives-ouvertes.fr/tel-00130610Google Scholar
- A. Fargette. 2017. Soft Interfaces: from elastocapillary snap-through to droplet dynamics on elastomers. Ph.D. Dissertation. Université Pierre et Marie Curie - Paris VI.Google Scholar
- R. Fosdick and E. Fried (Eds.). 2015. The Mechanics of Ribbons and Moebius Bands. Springer.Google Scholar
- K. Gavriil, R. Guseinov, J. Pérez, D. Pellis, P. Henderson, F. Rist, H. Pottmann, and B. Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6, Article 208 (Dec 2020), 16 pages.Google Scholar
- J. M. Gere. 2004. Mechancis of Materials (6th ed.). Thomson-Brooks/Cole.Google Scholar
- A. Goriely. 2006. Twisted Elastic Rings and the Rediscoveries of Michell's Instability. Journal of Elasticity 84 (September 2006), 281--299. Google Scholar
Cross Ref
- E. Grinspun, Y. Gingold, J. Reisman, and D. Zorin. 2006. Computing discrete shape operators on general meshes. Computer Graphics Forum 25, 3 (2006), 547--556. Google Scholar
Cross Ref
- E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'03). ACM-EG SCA, 62--67. http://www.multires.caltech.edu/pubs/ds.pdfGoogle Scholar
Digital Library
- R. Guseinov, C. McMahan, J. Pérez, C. Daraio, and B. Bickel. 2020. Programming temporal morphing of self-actuated shells. Nature Communications 11 (Jan. 2020). Google Scholar
Cross Ref
- M. Habera, J. S. Hale, A. Logg, C. Richardson, J. Ring, M. E. Rognes, N. Sime, and G. N. Wells. 2018. The Fenics Project. https://fenicsproject.orgGoogle Scholar
- S. Hadap. 2006. Oriented Strands - Dynamics of Stiff Multi-Body System. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation. Google Scholar
Cross Ref
- J. S. Hale, M. Brunetti, S. Bordas, and C. Maurini. 2018. Simple and extensible plate and shell finite element models through automatic code generation tools. Computers & Structures 209 (2018), 163--181.Google Scholar
Cross Ref
- D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July 2009), 12 pages. Google Scholar
Digital Library
- D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans. Graph. 27, 3, Article 23 (Aug. 2008), 4 pages. Google Scholar
Digital Library
- D. Hinz and E. Fried. 2015. Translation of Michael Sadowsky's Paper 'An Elementary Proof for the Existence of a Developable Möbius Band and the Attribution of the Geometric Problem to a Variational Problem'. Journal of Elasticity 119, 1 (2015), 3--6.Google Scholar
Cross Ref
- L. Hu, D. Bradley, H. Li, and T. Beeler. 2017. Simulation-Ready Hair Capture. Computer Graphics Forum (2017). Google Scholar
Cross Ref
- M. Jawed, F. Da, J. Joo, E. Grinspun, and P. Reis. 2014. Coiling of elastic rods on rigid substrates. Proceedings of the National Academy of Sciences 111, 41 (2014), 14663--14668. http://www.cs.columbia.edu/cg/elastic_coiling. Google Scholar
Cross Ref
- D. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans. Graph. 33, 4, Article 123 (July 2014), 12 pages.Google Scholar
Digital Library
- S. Kawabata and Masako Niwa. 1989. Fabric Performance in Clothing and Clothing Manufacture. The Journal of The Textile Institute 80, 1 (1989), 19--50. Google Scholar
Cross Ref
- K. Krieger. 2012. Extreme mechanics: buckling down. Nature 488, 7410 (Aug. 2012), 146--147.Google Scholar
Cross Ref
- F. Laccone, L. Malomo, J. Pérez, N. Pietroni, F. Ponchio, B. Bickel, and P. Cignoni. 2019. FlexMaps Pavilion: a twisted arc made of mesostructured flat flexible panels. In FORM and FORCE, IASS Symposium 2019, Structural Membranes 2019. CIMNE, 498--504. http://vcg.isti.cnr.it/Publications/2019/LMPPPBC19Google Scholar
- L. D. Landau and E. M. Lifshitz. 1959. Theory of elasticity. Pergamon London.Google Scholar
- J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. Brown, and L. Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (Aug. 2018), 15 pages.Google Scholar
Digital Library
- M. Li, D. Kaufman, and C. Jiang. 2020. Codimensional Incremental Potential Contact. https://arxiv.org/pdf/2012.04457.pdfGoogle Scholar
- J. Liang, M.C. Lin, and V. Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems.Google Scholar
- M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes. 2020. Projective Dynamics with Dry Frictional Contact. ACM Transactions on Graphics 39, 4 (2020), 1--8. Google Scholar
Digital Library
- S. Martin, P. Kaufmann, Mario Botsch, E. Grinspun, and M. Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (July 2010), 10 pages. Google Scholar
Digital Library
- J. Martínez, M. Skouras, C. Schumacher, S. Hornus, S. Lefebvre, and B. Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Metamaterial Design. ACM Transactions on Graphics 38, 4 (July 2019), Article No. 82:1--13. Google Scholar
Digital Library
- A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail preserving continuum simulation of straight hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'09) 28, 3 (2009), 1--6. Google Scholar
Digital Library
- A. G. M. Michell. 1899. Elastic stability of long beams under transverse forces. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48, 292 (1899), 298--309.Google Scholar
Cross Ref
- E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31, 2 (may 2012). Google Scholar
Digital Library
- Y Mikata. 2006. Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta mechanica 190, 1-4 (Oct. 2006), 133--150.Google Scholar
- J. Miller, A. Lazarus, B. Audoly, and P. Reis. 2014. Shapes of a Suspended Curly Hair. Physical Review Letters 112, 6 (2014).Google Scholar
Cross Ref
- K. Museth. 2020. Physics simulations: Is it Hollywood magic or rocket science. http://computeranimation.org/2020/program.html#keynote1Google Scholar
- R. Narain, T. Pfaff, and J. O'Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4 (2013), 51.Google Scholar
Digital Library
- R. Narain, A. Samii, and J. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.Google Scholar
Digital Library
- D. K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352. Google Scholar
Cross Ref
- J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019), 15 pages. Google Scholar
Digital Library
- H. Pham. 1999. Software reliability. Springer.Google Scholar
- A.-H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A. Lazarus. 2020. Learning to Measure the Static Friction Coefficient in Cloth Contact. In CVPR 2020 - IEEE Conference on Computer Vision and Pattern Recognition. Seattle, United States, 1--10. https://hal.inria.fr/hal-02511646Google Scholar
- P. M. Reis. 2015. A Perspective on the Revival of Structural (In) Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia. Journal of Applied Mechanics 82, 11 (Sept. 2015). Google Scholar
Cross Ref
- E. Reissner. 1995. The problem of lateral buckling of cantilever plates. ZAMM - Journal of Applied Mathematics and Mechanics 8 (1995), 615--621.Google Scholar
Cross Ref
- B. Roman and A Pocheau. 2002. Postbuckling of bilaterally constrained rectangular thin plates. Journal of the Mechanics and Physics of Solids 50, 1 (2002), 2379--2401.Google Scholar
Cross Ref
- M. Sadowsky. 1929. Die Differentialgleichungen des MÖBIUSschen Bandes. Jahresbericht der Deutschen Mathematiker-Vereinigung (1929), 49--51., translated in [Hinz and Fried 2015].Google Scholar
- T. Sano, T. Yamaguchi, and H. Wada. 2017. Slip Morphology of Elastic Strips on Frictional Rigid Substrates. Physical Review Letters 118, 17 (2017), 178001--5.Google Scholar
Cross Ref
- C. Schumacher, S. Marschner, M. Gross, and B. Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 37, 4, Article 148 (July 2018), 15 pages. Google Scholar
Digital Library
- R. T. Shield. 1992. Bending of a beam or wide strip. Quarterly Journal of Mechanics and Applied Mathematics 45, 4 (1992), 567--573.Google Scholar
Cross Ref
- M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross. 2012. Computational Design of Rubber Balloons. Comput. Graphics Forum (Proc. Eurographics) (2012).Google Scholar
- M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. Google Scholar
Digital Library
- B. Smith, D. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4, Article 106 (July 2012), 12 pages. Google Scholar
Digital Library
- J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07). ACM-EG SCA, 63--72.Google Scholar
Digital Library
- K Sze, X. Liu, and S. Lo. 2004. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 40, 11 (2004), 1551 -- 1569. Google Scholar
Digital Library
- S. Timoshenko. 1953. History of strength of materials. The McGraw-Hill Book Company, Inc.Google Scholar
- F. Vanneste, O. Goury, J. Martinez, S. Lefebvre, H. Delingette, and C. Duriez. 2020. Anisotropic soft robots based on 3D printed meso-structured materials: design, modeling by homogenization and simulation. IEEE Robotics and Automation Letters 5, 2 (Jan. 2020), 2380--2386. Google Scholar
Cross Ref
- L. Virgin. 2007. Vibration of axially loaded structures. Cambridge University Press.Google Scholar
- H. Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages.Google Scholar
Digital Library
- H. Wang, R. Ramamoorthi, and J. O'Brien. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, Article 71 (Aug. 2011), 12 pages.Google Scholar
Digital Library
- C. Weischedel. 2012. A discrete geometric view on shear-deformable shell models.Google Scholar
- W. Wunderlich. 1962. Über ein abwickelbares Möbiusband. Monatshefte für Mathematik 66, 3 (June 1962), 276--289. Google Scholar
Cross Ref
- S. Yang, J. Liang, and M. C. Lin. 2017. Learning-based cloth material recovery from video. In Proceedings of the IEEE International Conference on Computer Vision. 4383--4393.Google Scholar
- S. Yang and M.C. Lin. 2016. MaterialCloning: Acquiring elasticity parameters from images for medical applications. IEEE Transactions on Visualization and Computer Graphics 22, 9 (2016), 2122--2135.Google Scholar
Digital Library
Index Terms
Physical validation of simulators in computer graphics: a new framework dedicated to slender elastic structures and frictional contact
Recommendations
Experimental validation of in-hand planar orientation and translation in microscale
This paper presents the experimental validation of automatic dexterous in-hand manipulation of micro-objects. Currently, precise handling of micro-objects is still a challenge, especially when large rotations are required. Indeed, the current dexterity ...
Inverse elastic shell design with contact and friction
We propose an inverse strategy for modeling thin elastic shells physically, just from the observation of their geometry. Our algorithm takes as input an arbitrary target mesh, and interprets this configuration automatically as a stable equilibrium of a ...
Validation of Mechanical Layer Equivalent Method for simulation of residual stresses in additive manufactured components
AbstractA challenge in the additive manufacturing process of laser beam melting of metals is the formation of residual stresses, which can cause large part deformations, when the part is released, lower the application range concerning tensile ...





Comments