skip to main content
research-article

Physical validation of simulators in computer graphics: a new framework dedicated to slender elastic structures and frictional contact

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual effects, they are more and more used as virtual design tools for predicting the shape and deformation of real objects; hence the need for a careful, quantitative validation. Our tests, experimentally verified, are designed to evaluate carefully the predictability of these simulators on various aspects, such as bending elasticity, bend-twist coupling, and frictional contact. We have passed a number of popular codes of Computer Graphics through our benchmarks by defining a rigorous, consistent, and as fair as possible methodology. Our results show that while some popular simulators for plates/shells and frictional contact fail even on the simplest scenarios, more recent ones, as well as well-known codes for rods, generally perform well and sometimes even better than some reference commercial tools of Mechanical Engineering. To make our validation protocols easily applicable to any simulator, we provide an extensive description of our methodology, and we shall distribute all the necessary model data to be compared against.

Skip Supplemental Material Section

Supplemental Material

3450626.3459931.mp4
a66-romero.mp4

References

  1. D. Arnold and F. Brezzi. 1997. Locking free finite element for shells. Math. Comput. 66 (Jan. 1997), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. U. Ascher, R. Mattheij, and R. Russell. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM.Google ScholarGoogle Scholar
  3. B. Audoly and Y. Pomeau. 2010. Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press.Google ScholarGoogle Scholar
  4. D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43--54. http://www.cs.cmu.edu/~baraff/papers/sig98.pdfGoogle ScholarGoogle Scholar
  5. D. Baraff, A. Witkin, and M. Kass. 2003. Untangling Cloth. ACM Transactions on Graphics 22, 3 (2003), 862--870.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Bartle, A. Sheffer, V. Kim, D. Kaufman, N. Vining, and F. Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun. 2010. Discrete Viscous Threads. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'10) 29, 4 (2010). http://www.cs.columbia.edu/cg/threadsGoogle ScholarGoogle Scholar
  8. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'08) 27, 3 (2008), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L. Lévêque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'06) 25 (2006), 1180--1187. Issue 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Bickel, M. Bächer, M. Otaduy, H. Richard Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. Bickel, M. Bächer, M. Otaduy, W. Matusik, H. Pfister, and M. Gross. 2009. Capture and Modeling of Non-Linear Heterogeneous Soft Tissue. ACM Trans. Graph. 28, 3, Article 89 (July 2009), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. W.G. Bickley. 1934. The heavy elastica. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 113 (1934), 603--622. Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. F. Boyer, V. Lebastard, F. Candelier, and F. Renda. 2020. Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach. IEEE Transactions on Robotics (2020), 1--17. Google ScholarGoogle ScholarCross RefCross Ref
  15. R. Bridson, R. Fedkiw, and R. Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (2002), 594--603. http://www.cs.ubc.ca/~rbridson/docs/cloth2002.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '03). 28--36. http://dl.acm.org/citation.cfm?id=846276.846281Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Brunetti, J. S. Hale, and C. Maurini. 2018. Fenics-Shells demos. https://fenics-shells.readthedocs.io/en/latest/demo/nonlinear-naghdi-cylindrical/demo_nonlinear-naghdi-cylindrical.py.htmlGoogle ScholarGoogle Scholar
  18. E. Buckingham. 1914. On physically similar systems; illustrations of the use of dimensional equations. Physical Review 4, 4 (1914), 345--376.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Casati and F. Bertails-Descoubes. 2013. Super Space Clothoids. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'13) 32, 4, Article 48 (July 2013), 12 pages. http://www.inrialpes.fr/bipop/people/casati/research.html#ssc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Charrondière, F. Bertails-Descoubes, S. Neukirch, and V. Romero. 2020. Numerical modeling of inextensible elastic ribbons with curvature-based elements. Computer Methods in Applied Mechanics and Engineering 364 (2020), 112922. Google ScholarGoogle ScholarCross RefCross Ref
  21. H.-Y. Chen, A. Sastry, W. van Rees, and E. Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Clyde, J. Teran, and R. Tamstorf. 2017. Modeling and Data-Driven Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. E. Coevoet, A. Escande, and C. Duriez. 2019. Soft robots locomotion and manipulation control using FEM simulation and quadratic programming. In RoboSoft 2019 - IEEE International Conference on Soft Robotics. Seoul, South Korea. https://hal.inria.fr/hal-02079151Google ScholarGoogle Scholar
  24. S. Coros, S. Martin, B. Thomaszewski, C. Schumacher, R. Sumner, and M. Gross. 2012. Deformable Objects Alive! ACM Trans. Graph. 31, 4, Article 69 (July 2012), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. A. Crisfield and G. Jelenić. 1998. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. Royal Society of London, Series A 455, 1983 (1998), 1125--1147.Google ScholarGoogle Scholar
  26. Dassault-Systems. 2005. Simulia Abaqus. https://www.3ds.com/products-services/simulia/products/abaqusGoogle ScholarGoogle Scholar
  27. G. Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans. Graph. 32, 6, Article 159 (Nov. 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Dias and B. Audoly. 2015. "Wunderlich, Meet Kirchhoff": A General and Unified Description of Elastic Ribbons and Thin Rods. Journal of Elasticity 119, 1 (Apr 2015), 49--66. Google ScholarGoogle ScholarCross RefCross Ref
  31. E. Doedel, H. Keller, and J.-P. Kernevez. 1991. Numerical Analysis and Control of Bifurcation Problems (I) Bifurcation in Finite Dimensions. International Journal of Bifurcation and Chaos 1, 3 (1991), 493--520.Google ScholarGoogle ScholarCross RefCross Ref
  32. V. Duclaux. 2006. Pulmonary occlusions, eyelid entropion and aneurysm : a physical insight in physiology. Ph.D. Dissertation. Université de Provence - Aix-Marseille I. https://tel.archives-ouvertes.fr/tel-00130610Google ScholarGoogle Scholar
  33. A. Fargette. 2017. Soft Interfaces: from elastocapillary snap-through to droplet dynamics on elastomers. Ph.D. Dissertation. Université Pierre et Marie Curie - Paris VI.Google ScholarGoogle Scholar
  34. R. Fosdick and E. Fried (Eds.). 2015. The Mechanics of Ribbons and Moebius Bands. Springer.Google ScholarGoogle Scholar
  35. K. Gavriil, R. Guseinov, J. Pérez, D. Pellis, P. Henderson, F. Rist, H. Pottmann, and B. Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6, Article 208 (Dec 2020), 16 pages.Google ScholarGoogle Scholar
  36. J. M. Gere. 2004. Mechancis of Materials (6th ed.). Thomson-Brooks/Cole.Google ScholarGoogle Scholar
  37. A. Goriely. 2006. Twisted Elastic Rings and the Rediscoveries of Michell's Instability. Journal of Elasticity 84 (September 2006), 281--299. Google ScholarGoogle ScholarCross RefCross Ref
  38. E. Grinspun, Y. Gingold, J. Reisman, and D. Zorin. 2006. Computing discrete shape operators on general meshes. Computer Graphics Forum 25, 3 (2006), 547--556. Google ScholarGoogle ScholarCross RefCross Ref
  39. E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'03). ACM-EG SCA, 62--67. http://www.multires.caltech.edu/pubs/ds.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  40. R. Guseinov, C. McMahan, J. Pérez, C. Daraio, and B. Bickel. 2020. Programming temporal morphing of self-actuated shells. Nature Communications 11 (Jan. 2020). Google ScholarGoogle ScholarCross RefCross Ref
  41. M. Habera, J. S. Hale, A. Logg, C. Richardson, J. Ring, M. E. Rognes, N. Sime, and G. N. Wells. 2018. The Fenics Project. https://fenicsproject.orgGoogle ScholarGoogle Scholar
  42. S. Hadap. 2006. Oriented Strands - Dynamics of Stiff Multi-Body System. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarCross RefCross Ref
  43. J. S. Hale, M. Brunetti, S. Bordas, and C. Maurini. 2018. Simple and extensible plate and shell finite element models through automatic code generation tools. Computers & Structures 209 (2018), 163--181.Google ScholarGoogle ScholarCross RefCross Ref
  44. D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July 2009), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans. Graph. 27, 3, Article 23 (Aug. 2008), 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. D. Hinz and E. Fried. 2015. Translation of Michael Sadowsky's Paper 'An Elementary Proof for the Existence of a Developable Möbius Band and the Attribution of the Geometric Problem to a Variational Problem'. Journal of Elasticity 119, 1 (2015), 3--6.Google ScholarGoogle ScholarCross RefCross Ref
  47. L. Hu, D. Bradley, H. Li, and T. Beeler. 2017. Simulation-Ready Hair Capture. Computer Graphics Forum (2017). Google ScholarGoogle ScholarCross RefCross Ref
  48. M. Jawed, F. Da, J. Joo, E. Grinspun, and P. Reis. 2014. Coiling of elastic rods on rigid substrates. Proceedings of the National Academy of Sciences 111, 41 (2014), 14663--14668. http://www.cs.columbia.edu/cg/elastic_coiling. Google ScholarGoogle ScholarCross RefCross Ref
  49. D. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans. Graph. 33, 4, Article 123 (July 2014), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. S. Kawabata and Masako Niwa. 1989. Fabric Performance in Clothing and Clothing Manufacture. The Journal of The Textile Institute 80, 1 (1989), 19--50. Google ScholarGoogle ScholarCross RefCross Ref
  51. K. Krieger. 2012. Extreme mechanics: buckling down. Nature 488, 7410 (Aug. 2012), 146--147.Google ScholarGoogle ScholarCross RefCross Ref
  52. F. Laccone, L. Malomo, J. Pérez, N. Pietroni, F. Ponchio, B. Bickel, and P. Cignoni. 2019. FlexMaps Pavilion: a twisted arc made of mesostructured flat flexible panels. In FORM and FORCE, IASS Symposium 2019, Structural Membranes 2019. CIMNE, 498--504. http://vcg.isti.cnr.it/Publications/2019/LMPPPBC19Google ScholarGoogle Scholar
  53. L. D. Landau and E. M. Lifshitz. 1959. Theory of elasticity. Pergamon London.Google ScholarGoogle Scholar
  54. J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. Brown, and L. Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (Aug. 2018), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. Li, D. Kaufman, and C. Jiang. 2020. Codimensional Incremental Potential Contact. https://arxiv.org/pdf/2012.04457.pdfGoogle ScholarGoogle Scholar
  56. J. Liang, M.C. Lin, and V. Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems.Google ScholarGoogle Scholar
  57. M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes. 2020. Projective Dynamics with Dry Frictional Contact. ACM Transactions on Graphics 39, 4 (2020), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. S. Martin, P. Kaufmann, Mario Botsch, E. Grinspun, and M. Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. J. Martínez, M. Skouras, C. Schumacher, S. Hornus, S. Lefebvre, and B. Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Metamaterial Design. ACM Transactions on Graphics 38, 4 (July 2019), Article No. 82:1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail preserving continuum simulation of straight hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'09) 28, 3 (2009), 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. A. G. M. Michell. 1899. Elastic stability of long beams under transverse forces. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48, 292 (1899), 298--309.Google ScholarGoogle ScholarCross RefCross Ref
  62. E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31, 2 (may 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Y Mikata. 2006. Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta mechanica 190, 1-4 (Oct. 2006), 133--150.Google ScholarGoogle Scholar
  64. J. Miller, A. Lazarus, B. Audoly, and P. Reis. 2014. Shapes of a Suspended Curly Hair. Physical Review Letters 112, 6 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  65. K. Museth. 2020. Physics simulations: Is it Hollywood magic or rocket science. http://computeranimation.org/2020/program.html#keynote1Google ScholarGoogle Scholar
  66. R. Narain, T. Pfaff, and J. O'Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4 (2013), 51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. R. Narain, A. Samii, and J. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. D. K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352. Google ScholarGoogle ScholarCross RefCross Ref
  69. J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. H. Pham. 1999. Software reliability. Springer.Google ScholarGoogle Scholar
  71. A.-H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A. Lazarus. 2020. Learning to Measure the Static Friction Coefficient in Cloth Contact. In CVPR 2020 - IEEE Conference on Computer Vision and Pattern Recognition. Seattle, United States, 1--10. https://hal.inria.fr/hal-02511646Google ScholarGoogle Scholar
  72. P. M. Reis. 2015. A Perspective on the Revival of Structural (In) Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia. Journal of Applied Mechanics 82, 11 (Sept. 2015). Google ScholarGoogle ScholarCross RefCross Ref
  73. E. Reissner. 1995. The problem of lateral buckling of cantilever plates. ZAMM - Journal of Applied Mathematics and Mechanics 8 (1995), 615--621.Google ScholarGoogle ScholarCross RefCross Ref
  74. B. Roman and A Pocheau. 2002. Postbuckling of bilaterally constrained rectangular thin plates. Journal of the Mechanics and Physics of Solids 50, 1 (2002), 2379--2401.Google ScholarGoogle ScholarCross RefCross Ref
  75. M. Sadowsky. 1929. Die Differentialgleichungen des MÖBIUSschen Bandes. Jahresbericht der Deutschen Mathematiker-Vereinigung (1929), 49--51., translated in [Hinz and Fried 2015].Google ScholarGoogle Scholar
  76. T. Sano, T. Yamaguchi, and H. Wada. 2017. Slip Morphology of Elastic Strips on Frictional Rigid Substrates. Physical Review Letters 118, 17 (2017), 178001--5.Google ScholarGoogle ScholarCross RefCross Ref
  77. C. Schumacher, S. Marschner, M. Gross, and B. Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 37, 4, Article 148 (July 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. R. T. Shield. 1992. Bending of a beam or wide strip. Quarterly Journal of Mechanics and Applied Mathematics 45, 4 (1992), 567--573.Google ScholarGoogle ScholarCross RefCross Ref
  79. M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross. 2012. Computational Design of Rubber Balloons. Comput. Graphics Forum (Proc. Eurographics) (2012).Google ScholarGoogle Scholar
  80. M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. B. Smith, D. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4, Article 106 (July 2012), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07). ACM-EG SCA, 63--72.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. K Sze, X. Liu, and S. Lo. 2004. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 40, 11 (2004), 1551 -- 1569. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. S. Timoshenko. 1953. History of strength of materials. The McGraw-Hill Book Company, Inc.Google ScholarGoogle Scholar
  85. F. Vanneste, O. Goury, J. Martinez, S. Lefebvre, H. Delingette, and C. Duriez. 2020. Anisotropic soft robots based on 3D printed meso-structured materials: design, modeling by homogenization and simulation. IEEE Robotics and Automation Letters 5, 2 (Jan. 2020), 2380--2386. Google ScholarGoogle ScholarCross RefCross Ref
  86. L. Virgin. 2007. Vibration of axially loaded structures. Cambridge University Press.Google ScholarGoogle Scholar
  87. H. Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. H. Wang, R. Ramamoorthi, and J. O'Brien. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, Article 71 (Aug. 2011), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. C. Weischedel. 2012. A discrete geometric view on shear-deformable shell models.Google ScholarGoogle Scholar
  90. W. Wunderlich. 1962. Über ein abwickelbares Möbiusband. Monatshefte für Mathematik 66, 3 (June 1962), 276--289. Google ScholarGoogle ScholarCross RefCross Ref
  91. S. Yang, J. Liang, and M. C. Lin. 2017. Learning-based cloth material recovery from video. In Proceedings of the IEEE International Conference on Computer Vision. 4383--4393.Google ScholarGoogle Scholar
  92. S. Yang and M.C. Lin. 2016. MaterialCloning: Acquiring elasticity parameters from images for medical applications. IEEE Transactions on Visualization and Computer Graphics 22, 9 (2016), 2122--2135.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Physical validation of simulators in computer graphics: a new framework dedicated to slender elastic structures and frictional contact

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader