skip to main content
research-article

Unconventional patterns on surfaces

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We present a unified method to meshing surfaces with unconventional patterns, both periodic and aperiodic. These patterns, which have so far been studied on the plane, are patterns comprising a small number of tiles, that do not necessarily exhibit translational periodicity. Our method generalizes the de Bruijn multigrid method to the discrete setting, and thus reduces the problem to the computation of N-Directional fields on triangle meshes. We work with all cases of directional symmetries that have been little studied, including odd and high N. We address the properties of such patterns on surfaces and the challenges in their construction, including order-preservation, seamlessness, duality, and singularities. We show how our method allows for the design of original and unconventional meshes that can be applied to architectural, industrial, and recreational design.

Skip Supplemental Material Section

Supplemental Material

3450626.3459933.mp4

References

  1. Ergun Akleman, Vinod Srinivasan, and Esan Mandal. 2005. Remeshing Schemes for Semi-Regular Tilings. In Proceedings of the International Conference on Shape Modeling and Applications 2005. 44--50.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Pierre Alliez, Stéphane Tayeb, and Camille Wormser. 2021. 3D Fast Intersection and Distance Computation. In CGAL User and Reference Manual (5.2.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.2.1/Manual/packages.html#PkgAABBTreeGoogle ScholarGoogle Scholar
  3. Robert Ammann, Branko Grünbaum, and Geoffrey Shephard. 1992. Aperiodic tiles. Discrete & Computational Geometry 8, 1 (1992), 1--25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Omri Azencot, Etienne Corman, Mirela Ben-Chen, and Maks Ovsjanikov. 2017. Consistent functional cross field design for mesh quadrangulation. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Robert Berger. 1966. The undecidability of the domino problem. American Mathematical Soc.Google ScholarGoogle Scholar
  6. David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013. Integer-Grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article 98 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-Integer Quadrangulation. ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31, 5 (Aug. 2012), 1657--1667. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bram Custers and Amir Vaxman. 2020. Subdivision Directional Fields. ACM Transactions on Graphics (TOG) 39, 2 (2020), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Nicolaas de Bruijn. 1981. Algebraic theory of Penrose's non-periodic tilings of the plane. Kon. Nederl. Akad. Wetensch. Proc. Ser. A 43, 84 (1981), 1--7.Google ScholarGoogle Scholar
  11. Nicolaas de Bruijn. 1986. Dualization of multigrids. Le Journal de Physique Colloques 47, C3 (1986), C3--9.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016. Vector field processing on triangle meshes. In ACM SIGGRAPH 2016 Courses. 1--49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Designing N-PolyVector Fields with Complex Polynomials. Comput. Graph. Forum 33, 5 (Aug. 2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable PolyVector Fields. ACM Trans. Graph. 34, 4, Article 38 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: Robust Quad Mesh Extraction. ACM Trans. Graph. 32, 6, Article 168 (Nov. 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Branko Grünbaum and Geoffrey Colin Shephard. 1987. Tilings and patterns. Courier Dover Publications.Google ScholarGoogle Scholar
  17. James E Humphreys. 2012. Introduction to Lie algebras and representation theory. Vol. 9. Springer Science & Business Media.Google ScholarGoogle Scholar
  18. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.Google ScholarGoogle Scholar
  19. Caigui Jiang, Chengcheng Tang, Amir Vaxman, Peter Wonka, and Helmut Pottmann. 2015. Polyhedral Patterns. ACM Trans. Graph. 34, 6, Article 172 (Oct. 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. Quadcover-surface parameterization using branched coverings. In Computer graphics forum, Vol. 26. Wiley Online Library, 375--384.Google ScholarGoogle Scholar
  21. Craig S. Kaplan. 2017. Interwoven Islamic Geometric Patterns. In Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, David Swart, Carlo H. Séquin, and Kristóf Fenyvesi (Eds.). Tessellations Publishing, Phoenix, Arizona, 71--78. Available online at http://archive.bridgesmathart.org/2017/bridges2017-71.pdf.Google ScholarGoogle Scholar
  22. Craig S. Kaplan and David H. Salesin. 2004. Islamic Star Patterns in Absolute Geometry. ACM Trans. Graph. 23, 2 (April 2004), 97--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally Optimal Direction Fields. ACM Trans. Graph. 32, 4, Article 59 (July 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Patterns on Surfaces. ACM Trans. Graph. 34 (2015). Issue 4.Google ScholarGoogle Scholar
  25. L. S. Levitov. 1988. Local rules for quasicrystals. Comm. Math. Phys. 119, 4 (1988), 627--666. https://projecteuclid.org:443/euclid.cmp/1104162600Google ScholarGoogle ScholarCross RefCross Ref
  26. Yufei Li, Yang Liu, and Wenqiang Wang. 2014. Planar Hexagonal Meshing for Architecture. In IEEE Transactions on Visualization & Computer Graphics (ieee transactions on visualization & computer graphics ed.), Vol. 21. IEEE, 95. https://www.microsoft.com/en-us/research/publication/planar-hexagonal-meshing-architecture/Google ScholarGoogle Scholar
  27. Hao-Yu Liu, Zhong-Yuan Liu, Zheng-Yu Zhao, Ligang Liu, and Xiao-Ming Fu. 2020. Practical Fabrication of Discrete Chebyshev Nets. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 13--26.Google ScholarGoogle Scholar
  28. Peter J. Lu and Paul J. Steinhardt. 2007. Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture. Science 315, 5815 (2007), 1106--1110. arXiv:https://science.sciencemag.org/content/315/5815/1106.full.pdf Google ScholarGoogle ScholarCross RefCross Ref
  29. Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-Aligned Global Parametrization. ACM Trans. Graph. 33, 4, Article 135 (July 2014), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Matthias Nieser. 2012. Parameterization and Tiling of Polyhedral Surfaces. Ph.D. Dissertation. Freie Universität Berlin.Google ScholarGoogle Scholar
  31. Matthias Nieser, Jonathan Palacios, Konrad Polthier, and Eugene Zhang. 2011. Hexagonal global parameterization of arbitrary surfaces. IEEE Transactions on Visualization and Computer Graphics 18, 6 (2011), 865--878.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science & Business Media.Google ScholarGoogle Scholar
  33. Jonathan Palacios and Eugene Zhang. 2007. Rotational symmetry field design on surfaces. ACM Transactions on Graphics (TOG) 26, 3 (2007), 55--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Chi-Han Peng, Helmut Pottmann, and Peter Wonka. 2018. Designing Patterns Using Triangle-Quad Hybrid Meshes. ACM Trans. Graph. 37, 4, Article 107 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Roger Penrose. 1979. Pentaplexity a class of non-periodic tilings of the plane. The mathematical intelligencer 2, 1 (1979), 32--37.Google ScholarGoogle Scholar
  36. Konrad Polthier and Eike Preuß. 2003. Identifying Vector Field Singularities Using a Discrete Hodge Decomposition. In Visualization and Mathematics III, Hans-Christian Hege and Konrad Polthier (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 113--134.Google ScholarGoogle Scholar
  37. Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Raphael Robinson. 1971a. Undecidability and nonperiodicity for tilings of the plane. Inventiones mathematicae 12, 3 (1971), 177--209.Google ScholarGoogle Scholar
  39. Raphael M. Robinson. 1971b. Undecidability and nonperiodicity for tilings of the plane. Inventiones mathematicae 12, 3 (1971), 177--209. Google ScholarGoogle ScholarCross RefCross Ref
  40. Andrew O Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019. Chebyshev nets from commuting PolyVector fields. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Majorie Senechal. 1995. Quasicrystals and Geometry. Cambridge Publishing Company.Google ScholarGoogle Scholar
  42. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn. 1984. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 53 (Nov 1984), 1951--1953. Issue 20. Google ScholarGoogle ScholarCross RefCross Ref
  43. Toshikazu Sunada. 2006. Why do diamonds look so beautiful? Expositions of current mathematics 2006, Spring-Meeting (2006), 26--35.Google ScholarGoogle Scholar
  44. Hamish Todd et al. 2018. A Class of Spherical Penrose-Like Tilings with Connections to Virus Protein Patterns and Modular Sculpture. In Bridges 2018 Conference Proceedings. Tessellations Publishing, 237--244.Google ScholarGoogle Scholar
  45. Amir Vaxman. 2021. Directional Technical Reports: Seamless Integration. Google ScholarGoogle Scholar
  46. Amir Vaxman et al. 2019. Directional: A library for Directional Field Synthesis, Design, and Processing. Google ScholarGoogle ScholarCross RefCross Ref
  47. Amir Vaxman and Mirela Ben-Chen. 2015. Dupin meshing: A parameterization approach to planar hex-dominant meshing. Technion IIT CS Technical Report (2015).Google ScholarGoogle Scholar
  48. Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design, and Processing. Computer Graphics Forum 35, 2 (2016), 545--572. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12864 Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Hans Walser. 2000. Lattice geometry and pythagorean triangles. Zentralblatt für Didaktik der Mathematik 32, 2 (2000), 32--35.Google ScholarGoogle ScholarCross RefCross Ref
  50. Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and Baruch Zukerman. 2020. 2D Arrangements. In CGAL User and Reference Manual (5.1.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.1.1/Manual/packages.html#PkgArrangementOnSurface2Google ScholarGoogle Scholar
  51. Steffen Weißmann, Ulrich Pinkall, and Peter Schröder. 2014. Smoke Rings from Smoke. ACM Trans. Graph. 33, 4, Article 140 (July 2014), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. T Yamamoto. 1994. Validated computation of polynomial zeros by the Durand-Kerner method. Topics in validated computations (1994), 27--53.Google ScholarGoogle Scholar
  53. Xingchen Ye, Jun Chen, M. Eric Irrgang, Michael Engel, Angang Dong, Sharon C. Glotzer, and Christopher B. Murray. 2017. Quasicrystalline nanocrystal superlattice with partial matching rules. Nature Materials 16, 2 (2017), 214--219. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Unconventional patterns on surfaces

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 40, Issue 4
          August 2021
          2170 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3450626
          Issue’s Table of Contents

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 July 2021
          Published in tog Volume 40, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader