Abstract
We present an in-depth analysis of the sources of variance in state-of-the-art unbiased volumetric transmittance estimators, and propose several new methods for improving their efficiency. These combine to produce a single estimator that is universally optimal relative to prior work, with up to several orders of magnitude lower variance at the same cost, and has zero variance for any ray with non-varying extinction. We first reduce the variance of truncated power-series estimators using a novel efficient application of U-statistics. We then greatly reduce the average expansion order of the power series and redistribute density evaluations to filter the optical depth estimates with an equidistant sampling comb. Combined with the use of an online control variate built from a sampled mean density estimate, the resulting estimator effectively performs ray marching most of the time while using rarely-sampled higher-order terms to correct the bias.
Supplemental Material
Available for Download
a137-kettunen.zip
- John Amanatides and Andrew Woo. 1987. A Fast Voxel Traversal Algorithm for Ray Tracing. In EG 1987-Technical Papers. Eurographics Association. Google Scholar
- Nir Benty, Kai-Hwa Yao, Petrik Clarberg, Lucy Chen, Simon Kallweit, Tim Foley, Matthew Oakes, Conor Lavelle, and Chris Wyman. 2020. The Falcor Rendering Framework. https://github.com/NVIDIAGameWorks/FalcorGoogle Scholar
- H. W. Bertini. 1963. Monte Carlo simulations on intranuclear cascades. Technical Report ORNL-3383. Oak Ridge National Laboratory, Oak Ridge, TN, USA. Google Scholar
- Alexandros Beskos, Omiros Papaspiliopoulos, Gareth O Roberts, and Paul Fearnhead. 2006. Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68, 3 (2006), 333--382. Google Scholar
Cross Ref
- Gyan Bhanot and Anthony D Kennedy. 1985. Bosonic lattice gauge theory with noise. Physics letters B 157, 1 (1985), 70--76. Google Scholar
Cross Ref
- Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz. 2018. A radiative transfer framework for non-exponential media. ACM Transactions on Graphics 37, 6 (2018). Google Scholar
Digital Library
- Thomas E Booth. 2007. Unbiased Monte Carlo estimation of the reciprocal of an integral. Nuclear science and engineering 156, 3 (2007), 403--407. Google Scholar
Cross Ref
- NP Buslenko, DI Golenko, Yu A Shreider, I.M. Sobol',, and VG Sragovich. 1966. The Monte Carlo method: the method of statistical trials. Vol. 87. Pergamon.Google Scholar
- J. C. Butcher and H. Messel. 1958. Electron Number Distribution in Electron-Photon Showers. Phys. Rev. 112 (Dec. 1958), 2096--2106. Issue 6. Google Scholar
Cross Ref
- RH Cameron. 1954. The generalized heat flow equation and a corresponding Poisson formula. Annals of Mathematics (1954), 434--462. Google Scholar
Cross Ref
- LL Carter, ED Cashwell, and WM Taylor. 1972. Monte Carlo sampling with continuously varying cross sections along flight paths. Nucl. Sci. Eng 48 (1972), 403--411. Google Scholar
Cross Ref
- Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Dover.Google Scholar
- Nan Chen and Zhengyu Huang. 2012. Brownian meanders, importance sampling and unbiased simulation of diffusion extremes. Operations research letters 40, 6 (2012), 554--563. Google Scholar
Cross Ref
- W. A. Coleman. 1968. Mathematical Verification of a Certain Monte Carlo Sampling Technique and Applications of the Technique to Radiation Transport Problems. Nuclear Science and Engineering 32, 1 (1968), 76--81. Google Scholar
- DR Cox and PAW Lewis. 1966. The statistical analysis of Series of Events. Wiley.Google Scholar
- SN Cramer. 1978. Application of the fictitious scattering radiation transport model for deep-penetration Monte Carlo calculations. Nuclear Science and Engineering 65, 2 (1978), 237--253. Google Scholar
Cross Ref
- Eugene d'Eon. 2019. A reciprocal formulation of nonexponential radiative transfer. 1: Sketch and motivation. Journal of Computational and Theoretical Transport 48, 6 (2019), 201--262. Google Scholar
Cross Ref
- Mouna El Hafi, Stephane Blanco, Jérémi Dauchet, Richard Fournier, Mathieu Galtier, Loris Ibarrart, Jean-Marc Tregan, and Najda Villefranque. 2021. Three viewpoints on null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 260, 107402. Google Scholar
Cross Ref
- Paul Fearnhead, Omiros Papaspiliopoulos, and Gareth O Roberts. 2008. Particle filters for partially observed diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, 4 (2008), 755--777. Google Scholar
Cross Ref
- M. Galtier, S. Blanco, Cyril Caliot, C. Coustet, J. Dauchet, Mouna El-Hafi, Vincent Eymet, R. Fournier, J. Gautrais, A. Khuong, B. Piaud, and Guillaume Terrée. 2013. Integral formulation of null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 125 (Aug. 2013), 57--68. Google Scholar
Cross Ref
- Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav Křivánek, and Wojciech Jarosz. 2019. Integral formulations of volumetric transmittance. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Nov. 2019). https://doi.org/10/dffnGoogle Scholar
- Mark Girolami, Anne-Marie Lyne, Heiko Strathmann, Daniel Simpson, and Yves Atchade. 2013. Playing Russian roulette with intractable likelihoods. arXiv preprint arXiv:1306.4032 (2013). https://arxiv.org/abs/1306.4032Google Scholar
- Gerald J Glasser. 1962. Minimum variance unbiased estimators for Poisson probabilities. Technometrics 4, 3 (1962), 409--418. Google Scholar
Cross Ref
- Paul R Halmos. 1946. The theory of unbiased estimation. The Annals of Mathematical Statistics (1946), 34--43. Google Scholar
Cross Ref
- Pierre E Jacob, Alexandre H Thiery, et al. 2015. On nonnegative unbiased estimators. The Annals of Statistics 43, 2 (2015), 769--784. Google Scholar
Cross Ref
- Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A Radiative Transfer Framework for Spatially-Correlated Materials. ACM Transactions on Graphics 37, 4 (2018), 14. Google Scholar
Digital Library
- NL Johnson. 1951. Estimators of the probability of the zero class in Poisson and certain related populations. The Annals of Mathematical Statistics 22, 1 (1951), 94--101. Google Scholar
Cross Ref
- Daniel Jonsson, Joel Kronander, Jonas Unger, Thomas B Schon, and Magnus Wrenninge. 2020. Direct Transmittance Estimation in Heterogeneous Participating Media Using Approximated Taylor Expansions. IEEE Transactions on Visualization and Computer Graphics (2020). Google Scholar
Cross Ref
- Robert W Klein and Stephen D Roberts. 1984. A time-varying Poisson arrival process generator. Simulation 43, 4 (1984), 193--195. Google Scholar
Cross Ref
- Christopher Kulla and Marcos Fajardo. 2011. Importance Sampling of Area Lights in Participating Media. ACM SIGGRAPH 2011 Talks, SIGGRAPH'11, 55. Google Scholar
Digital Library
- Anthony Lee, Simone Tiberi, and Giacomo Zanella. 2019. Unbiased approximations of products of expectations. Biometrika 106, 3 (Sept. 2019). Google Scholar
Cross Ref
- A J Lee. 1990. U-statistics: Theory and Practice. Routledge.Google Scholar
- David Legrady, Balazs Molnar, Milan Klausz, and Tibor Major. 2017. Woodcock tracking with arbitrary sampling cross section using negative weights. Annals of Nuclear Energy 102 (04 2017), 116--123. Google Scholar
Cross Ref
- L Lin, K F Liu, and J Sloan. 2000. A noisy Monte Carlo algorithm. Physical Review. D, Particles Fields 61 (Apr 2000). Issue 7. Google Scholar
Cross Ref
- Savino Longo. 2002. Direct derivation of Skullerud's Monte Carlo method for charged particle transport from the linear Boltzmann equation. Physica A: Statistical Mechanics and its Applications 313, 3-4 (2002), 389--396. Google Scholar
Cross Ref
- Anne-Marie Lyne, Mark Girolami, Yves Atchadé, Heiko Strathmann, Daniel Simpson, et al. 2015. On Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. Statistical science 30, 4 (2015), 443--467. Google Scholar
Cross Ref
- D. G. Mead. 1992. Newton's Identities. The American Mathematical Monthly 99, 8 (1992), 749--751. http://www.jstor.org/stable/2324242Google Scholar
Cross Ref
- GA Mikhailov. 1970. A method for simulating the mean free path of a particle. Soviet Atomic Energy 28, 2 (1970), 224--225. Google Scholar
Cross Ref
- Gennadii A. Mikhailov. 1992. Optimization of weighted Monte Carlo methods. Springer. https://www.springer.com/gp/book/9783642759833Google Scholar
- Rupert G Miller. 1974. The jackknife-a review. Biometrika 61, 1 (1974), 1--15. Google Scholar
Cross Ref
- Sarat Babu Moka, Dirk P Kroese, and Sandeep Juneja. 2019. Unbiased estimation of the reciprocal mean for non-negative random variables. In 2019 Winter Simulation Conference (WSC). IEEE, 404--415. Google Scholar
Cross Ref
- Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages. Google Scholar
Digital Library
- Adolfo Muñoz. 2014. Higher Order Ray Marching. Computer Graphics Forum 33, 8 (2014), 167--176. Google Scholar
Digital Library
- Jerzy Neyman and Elizabeth L Scott. 1960. Correction for bias introduced by a transformation of variables. The Annals of Mathematical Statistics 31, 3 (1960), 643--655. https://www.jstor.org/stable/2237574Google Scholar
Cross Ref
- Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo Methods for Volumetric Light Transport Simulation. Computer Graphics Forum (Proceedings of Eurographics - State of the Art Reports) 37, 2 (May 2018). Google Scholar
Cross Ref
- Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for estimating attenuation in participating media. ACM Trans. Graph. 33, 6 (2014), 179--1. Google Scholar
Digital Library
- Omiros Papaspiliopoulos. 2011. Monte Carlo probabilistic inference for diffusion processes: a methodological framework. Cambridge University Press, 82--103. Google Scholar
Cross Ref
- Raghu Pasupathy. 2011. Generating Nonhomogeneous Poisson Processes. American Cancer Society. Google Scholar
Cross Ref
- Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis Light Transport for Participating Media. Rendering Techniques 2000 (11 2000). Google Scholar
Cross Ref
- Matthias Raab, Daniel Seibert, and Alex Keller. 2006. Unbiased Global Illumination with Participating Media. In Monte Carlo and Quasi Monte Carlo Methods 2006. Springer, 591--601. Google Scholar
Cross Ref
- Ravi Ramamoorthi, John Anderson, Mark Meyer, and Derek Nowrouzezahrai. 2012. A Theory of Monte Carlo Visibility Sampling. ACM Trans. Graph. 31, 5, Article 121 (Sept. 2012). Google Scholar
Digital Library
- H. R. Skullerud. 1968. The stochastic computer simulation of ion motion in a gas subjected to a constant electric field. Journal of Physics D: Applied Physics 1, 11 (1968), 1567--1568. Google Scholar
Cross Ref
- László Szirmay-Kalos, Balázs Tóth, and Milán Magdics. 2011. Free path sampling in high resolution inhomogeneous participating media. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 85--97. Google Scholar
Cross Ref
- Wolfgang Wagner. 1987. Unbiased Monte Carlo evaluation of certain functional integrals. J. Comput. Phys. 71, 1 (1987), 21--33. Google Scholar
Digital Library
- Wolfgang Wagner. 1988. Monte Carlo evaluation of functionals of solutions of stochastic differential equations. Variance reduction and numerical examples. Stochastic Analysis and Applications 6, 4 (1988), 447--468. Google Scholar
Cross Ref
- E Woodcock, T Murphy, P Hemmings, and S Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Technical Report ANL-7050. Argonne National Laboratory.Google Scholar
- C. D. Zerby, R. B. Curtis, and H. W. Bertini. 1961. The relativistic doppler problem. Technical Report ORNL-61-7-20. Oak Ridge National Laboratory, Oak Ridge, TN, USA. Google Scholar
Cross Ref
Index Terms
An unbiased ray-marching transmittance estimator
Recommendations
A non-exponential transmittance model for volumetric scene representations
We introduce a novel transmittance model to improve the volumetric representation of 3D scenes. The model can represent opaque surfaces in the volumetric light transport framework. Volumetric representations are useful for complex scenes, and become ...
Integral formulations of volumetric transmittance
Computing the light attenuation between two given points is an essential yet expensive task in volumetric light transport simulation. Existing unbiased transmittance estimators are all based on "null-scattering" random walks enabled by augmenting the ...
The correlation-assisted missing data estimator
We introduce a novel approach to estimation problems in settings with missing data. Our proposal - the Correlation-Assisted Missing data (CAM) estimator - works by exploiting the relationship between the observations with missing features and those ...





Comments