skip to main content
research-article

An unbiased ray-marching transmittance estimator

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We present an in-depth analysis of the sources of variance in state-of-the-art unbiased volumetric transmittance estimators, and propose several new methods for improving their efficiency. These combine to produce a single estimator that is universally optimal relative to prior work, with up to several orders of magnitude lower variance at the same cost, and has zero variance for any ray with non-varying extinction. We first reduce the variance of truncated power-series estimators using a novel efficient application of U-statistics. We then greatly reduce the average expansion order of the power series and redistribute density evaluations to filter the optical depth estimates with an equidistant sampling comb. Combined with the use of an online control variate built from a sampled mean density estimate, the resulting estimator effectively performs ray marching most of the time while using rarely-sampled higher-order terms to correct the bias.

Skip Supplemental Material Section

Supplemental Material

3450626.3459937.mp4

References

  1. John Amanatides and Andrew Woo. 1987. A Fast Voxel Traversal Algorithm for Ray Tracing. In EG 1987-Technical Papers. Eurographics Association. Google ScholarGoogle Scholar
  2. Nir Benty, Kai-Hwa Yao, Petrik Clarberg, Lucy Chen, Simon Kallweit, Tim Foley, Matthew Oakes, Conor Lavelle, and Chris Wyman. 2020. The Falcor Rendering Framework. https://github.com/NVIDIAGameWorks/FalcorGoogle ScholarGoogle Scholar
  3. H. W. Bertini. 1963. Monte Carlo simulations on intranuclear cascades. Technical Report ORNL-3383. Oak Ridge National Laboratory, Oak Ridge, TN, USA. Google ScholarGoogle Scholar
  4. Alexandros Beskos, Omiros Papaspiliopoulos, Gareth O Roberts, and Paul Fearnhead. 2006. Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68, 3 (2006), 333--382. Google ScholarGoogle ScholarCross RefCross Ref
  5. Gyan Bhanot and Anthony D Kennedy. 1985. Bosonic lattice gauge theory with noise. Physics letters B 157, 1 (1985), 70--76. Google ScholarGoogle ScholarCross RefCross Ref
  6. Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz. 2018. A radiative transfer framework for non-exponential media. ACM Transactions on Graphics 37, 6 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Thomas E Booth. 2007. Unbiased Monte Carlo estimation of the reciprocal of an integral. Nuclear science and engineering 156, 3 (2007), 403--407. Google ScholarGoogle ScholarCross RefCross Ref
  8. NP Buslenko, DI Golenko, Yu A Shreider, I.M. Sobol',, and VG Sragovich. 1966. The Monte Carlo method: the method of statistical trials. Vol. 87. Pergamon.Google ScholarGoogle Scholar
  9. J. C. Butcher and H. Messel. 1958. Electron Number Distribution in Electron-Photon Showers. Phys. Rev. 112 (Dec. 1958), 2096--2106. Issue 6. Google ScholarGoogle ScholarCross RefCross Ref
  10. RH Cameron. 1954. The generalized heat flow equation and a corresponding Poisson formula. Annals of Mathematics (1954), 434--462. Google ScholarGoogle ScholarCross RefCross Ref
  11. LL Carter, ED Cashwell, and WM Taylor. 1972. Monte Carlo sampling with continuously varying cross sections along flight paths. Nucl. Sci. Eng 48 (1972), 403--411. Google ScholarGoogle ScholarCross RefCross Ref
  12. Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Dover.Google ScholarGoogle Scholar
  13. Nan Chen and Zhengyu Huang. 2012. Brownian meanders, importance sampling and unbiased simulation of diffusion extremes. Operations research letters 40, 6 (2012), 554--563. Google ScholarGoogle ScholarCross RefCross Ref
  14. W. A. Coleman. 1968. Mathematical Verification of a Certain Monte Carlo Sampling Technique and Applications of the Technique to Radiation Transport Problems. Nuclear Science and Engineering 32, 1 (1968), 76--81. Google ScholarGoogle Scholar
  15. DR Cox and PAW Lewis. 1966. The statistical analysis of Series of Events. Wiley.Google ScholarGoogle Scholar
  16. SN Cramer. 1978. Application of the fictitious scattering radiation transport model for deep-penetration Monte Carlo calculations. Nuclear Science and Engineering 65, 2 (1978), 237--253. Google ScholarGoogle ScholarCross RefCross Ref
  17. Eugene d'Eon. 2019. A reciprocal formulation of nonexponential radiative transfer. 1: Sketch and motivation. Journal of Computational and Theoretical Transport 48, 6 (2019), 201--262. Google ScholarGoogle ScholarCross RefCross Ref
  18. Mouna El Hafi, Stephane Blanco, Jérémi Dauchet, Richard Fournier, Mathieu Galtier, Loris Ibarrart, Jean-Marc Tregan, and Najda Villefranque. 2021. Three viewpoints on null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 260, 107402. Google ScholarGoogle ScholarCross RefCross Ref
  19. Paul Fearnhead, Omiros Papaspiliopoulos, and Gareth O Roberts. 2008. Particle filters for partially observed diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, 4 (2008), 755--777. Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Galtier, S. Blanco, Cyril Caliot, C. Coustet, J. Dauchet, Mouna El-Hafi, Vincent Eymet, R. Fournier, J. Gautrais, A. Khuong, B. Piaud, and Guillaume Terrée. 2013. Integral formulation of null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 125 (Aug. 2013), 57--68. Google ScholarGoogle ScholarCross RefCross Ref
  21. Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav Křivánek, and Wojciech Jarosz. 2019. Integral formulations of volumetric transmittance. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Nov. 2019). https://doi.org/10/dffnGoogle ScholarGoogle Scholar
  22. Mark Girolami, Anne-Marie Lyne, Heiko Strathmann, Daniel Simpson, and Yves Atchade. 2013. Playing Russian roulette with intractable likelihoods. arXiv preprint arXiv:1306.4032 (2013). https://arxiv.org/abs/1306.4032Google ScholarGoogle Scholar
  23. Gerald J Glasser. 1962. Minimum variance unbiased estimators for Poisson probabilities. Technometrics 4, 3 (1962), 409--418. Google ScholarGoogle ScholarCross RefCross Ref
  24. Paul R Halmos. 1946. The theory of unbiased estimation. The Annals of Mathematical Statistics (1946), 34--43. Google ScholarGoogle ScholarCross RefCross Ref
  25. Pierre E Jacob, Alexandre H Thiery, et al. 2015. On nonnegative unbiased estimators. The Annals of Statistics 43, 2 (2015), 769--784. Google ScholarGoogle ScholarCross RefCross Ref
  26. Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A Radiative Transfer Framework for Spatially-Correlated Materials. ACM Transactions on Graphics 37, 4 (2018), 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. NL Johnson. 1951. Estimators of the probability of the zero class in Poisson and certain related populations. The Annals of Mathematical Statistics 22, 1 (1951), 94--101. Google ScholarGoogle ScholarCross RefCross Ref
  28. Daniel Jonsson, Joel Kronander, Jonas Unger, Thomas B Schon, and Magnus Wrenninge. 2020. Direct Transmittance Estimation in Heterogeneous Participating Media Using Approximated Taylor Expansions. IEEE Transactions on Visualization and Computer Graphics (2020). Google ScholarGoogle ScholarCross RefCross Ref
  29. Robert W Klein and Stephen D Roberts. 1984. A time-varying Poisson arrival process generator. Simulation 43, 4 (1984), 193--195. Google ScholarGoogle ScholarCross RefCross Ref
  30. Christopher Kulla and Marcos Fajardo. 2011. Importance Sampling of Area Lights in Participating Media. ACM SIGGRAPH 2011 Talks, SIGGRAPH'11, 55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Anthony Lee, Simone Tiberi, and Giacomo Zanella. 2019. Unbiased approximations of products of expectations. Biometrika 106, 3 (Sept. 2019). Google ScholarGoogle ScholarCross RefCross Ref
  32. A J Lee. 1990. U-statistics: Theory and Practice. Routledge.Google ScholarGoogle Scholar
  33. David Legrady, Balazs Molnar, Milan Klausz, and Tibor Major. 2017. Woodcock tracking with arbitrary sampling cross section using negative weights. Annals of Nuclear Energy 102 (04 2017), 116--123. Google ScholarGoogle ScholarCross RefCross Ref
  34. L Lin, K F Liu, and J Sloan. 2000. A noisy Monte Carlo algorithm. Physical Review. D, Particles Fields 61 (Apr 2000). Issue 7. Google ScholarGoogle ScholarCross RefCross Ref
  35. Savino Longo. 2002. Direct derivation of Skullerud's Monte Carlo method for charged particle transport from the linear Boltzmann equation. Physica A: Statistical Mechanics and its Applications 313, 3-4 (2002), 389--396. Google ScholarGoogle ScholarCross RefCross Ref
  36. Anne-Marie Lyne, Mark Girolami, Yves Atchadé, Heiko Strathmann, Daniel Simpson, et al. 2015. On Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. Statistical science 30, 4 (2015), 443--467. Google ScholarGoogle ScholarCross RefCross Ref
  37. D. G. Mead. 1992. Newton's Identities. The American Mathematical Monthly 99, 8 (1992), 749--751. http://www.jstor.org/stable/2324242Google ScholarGoogle ScholarCross RefCross Ref
  38. GA Mikhailov. 1970. A method for simulating the mean free path of a particle. Soviet Atomic Energy 28, 2 (1970), 224--225. Google ScholarGoogle ScholarCross RefCross Ref
  39. Gennadii A. Mikhailov. 1992. Optimization of weighted Monte Carlo methods. Springer. https://www.springer.com/gp/book/9783642759833Google ScholarGoogle Scholar
  40. Rupert G Miller. 1974. The jackknife-a review. Biometrika 61, 1 (1974), 1--15. Google ScholarGoogle ScholarCross RefCross Ref
  41. Sarat Babu Moka, Dirk P Kroese, and Sandeep Juneja. 2019. Unbiased estimation of the reciprocal mean for non-negative random variables. In 2019 Winter Simulation Conference (WSC). IEEE, 404--415. Google ScholarGoogle ScholarCross RefCross Ref
  42. Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Adolfo Muñoz. 2014. Higher Order Ray Marching. Computer Graphics Forum 33, 8 (2014), 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jerzy Neyman and Elizabeth L Scott. 1960. Correction for bias introduced by a transformation of variables. The Annals of Mathematical Statistics 31, 3 (1960), 643--655. https://www.jstor.org/stable/2237574Google ScholarGoogle ScholarCross RefCross Ref
  45. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo Methods for Volumetric Light Transport Simulation. Computer Graphics Forum (Proceedings of Eurographics - State of the Art Reports) 37, 2 (May 2018). Google ScholarGoogle ScholarCross RefCross Ref
  46. Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for estimating attenuation in participating media. ACM Trans. Graph. 33, 6 (2014), 179--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Omiros Papaspiliopoulos. 2011. Monte Carlo probabilistic inference for diffusion processes: a methodological framework. Cambridge University Press, 82--103. Google ScholarGoogle ScholarCross RefCross Ref
  48. Raghu Pasupathy. 2011. Generating Nonhomogeneous Poisson Processes. American Cancer Society. Google ScholarGoogle ScholarCross RefCross Ref
  49. Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis Light Transport for Participating Media. Rendering Techniques 2000 (11 2000). Google ScholarGoogle ScholarCross RefCross Ref
  50. Matthias Raab, Daniel Seibert, and Alex Keller. 2006. Unbiased Global Illumination with Participating Media. In Monte Carlo and Quasi Monte Carlo Methods 2006. Springer, 591--601. Google ScholarGoogle ScholarCross RefCross Ref
  51. Ravi Ramamoorthi, John Anderson, Mark Meyer, and Derek Nowrouzezahrai. 2012. A Theory of Monte Carlo Visibility Sampling. ACM Trans. Graph. 31, 5, Article 121 (Sept. 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. H. R. Skullerud. 1968. The stochastic computer simulation of ion motion in a gas subjected to a constant electric field. Journal of Physics D: Applied Physics 1, 11 (1968), 1567--1568. Google ScholarGoogle ScholarCross RefCross Ref
  53. László Szirmay-Kalos, Balázs Tóth, and Milán Magdics. 2011. Free path sampling in high resolution inhomogeneous participating media. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 85--97. Google ScholarGoogle ScholarCross RefCross Ref
  54. Wolfgang Wagner. 1987. Unbiased Monte Carlo evaluation of certain functional integrals. J. Comput. Phys. 71, 1 (1987), 21--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Wolfgang Wagner. 1988. Monte Carlo evaluation of functionals of solutions of stochastic differential equations. Variance reduction and numerical examples. Stochastic Analysis and Applications 6, 4 (1988), 447--468. Google ScholarGoogle ScholarCross RefCross Ref
  56. E Woodcock, T Murphy, P Hemmings, and S Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Technical Report ANL-7050. Argonne National Laboratory.Google ScholarGoogle Scholar
  57. C. D. Zerby, R. B. Curtis, and H. W. Bertini. 1961. The relativistic doppler problem. Technical Report ORNL-61-7-20. Oak Ridge National Laboratory, Oak Ridge, TN, USA. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. An unbiased ray-marching transmittance estimator

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader