skip to main content
research-article

Computational design of weingarten surfaces

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

In this paper we study Weingarten surfaces and explore their potential for fabrication-aware design in freeform architecture. Weingarten surfaces are characterized by a functional relation between their principal curvatures that implicitly defines approximate local congruences on the surface. These symmetries can be exploited to simplify surface paneling of double-curved architectural skins through mold re-use.

We present an optimization approach to find a Weingarten surface that is close to a given input design. Leveraging insights from differential geometry, our method aligns curvature isolines of the surface in order to contract the curvature diagram from a 2D region into a 1D curve. The unknown functional curvature relation then emerges as the result of the optimization. We show how a robust and efficient numerical shape approximation method can be implemented using a guided projection approach on a high-order B-spline representation. This algorithm is applied in several design studies to illustrate how Weingarten surfaces define a versatile shape space for fabrication-aware exploration in freeform architecture. Our optimization algorithm provides the first practical tool to compute general Weingarten surfaces with arbitrary curvature relation, thus enabling new investigations into a rich, but as of yet largely unexplored class of surfaces.

Skip Supplemental Material Section

Supplemental Material

3450626.3459939.mp4

References

  1. Pengbo Bo, Helmut Pottmann, Martin Kilian, Wenping Wang, and Johannes Wallner. 2011. Circular Arc Structures. ACM Trans. Graph. 30, 4, Article 101 (July 2011), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexander Bobenko, Tim Hoffmann, and Boris Springborn. 2006. Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. Math. 164 (2006), 231--264.Google ScholarGoogle ScholarCross RefCross Ref
  3. Alexander I. Bobenko and Emanuel Huhnen-Venedey. 2012. Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides. Geom. Dedicata 159 (2012), 207--237. Google ScholarGoogle ScholarCross RefCross Ref
  4. Alexander I. Bobenko and Yuri B. Suris. 2008. Discrete differential geometry. Integrable structure. Graduate Studies in Mathematics, Vol. 98. American Mathematical Society, Providence, RI.Google ScholarGoogle Scholar
  5. Kenneth A. Brakke. 1992. The Surface Evolver. Experimental Mathematics 1, 2 (1992), 141--165. Google ScholarGoogle ScholarCross RefCross Ref
  6. Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra, Helmut Pottmann, and Mark Pauly. 2010. Paneling Architectural Freeform Surfaces. ACM Trans. Graph. 29, 4 (2010), 45:1--45:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Michael Eigensatz, Robert W. Sumner, and Mark Pauly. 2008. Curvature-Domain Shape Processing. Computer Graphics Forum 27, 2 (2008), 241--250. Google ScholarGoogle ScholarCross RefCross Ref
  8. Konstantinos Gavriil, Ruslan Guseinov, Jesus Perez, Davide Pellis, Paul Henderson, Florian Rist, Helmut Pottmann, and Bernd Bickel. 2020. Computational design of cold bent glass facades. ACM Trans. Graphics 39, 6 (2020), 208:1--208:16. Proc. SIGGRAPH Asia.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Heinz Hopf. 1951. Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Math. Nachr. 4 (1951), 232--249.Google ScholarGoogle ScholarCross RefCross Ref
  10. Emanuel Huhnen-Venedey and Thilo Rörig. 2014. Discretization of asymptotic line parametrizations using hyperboloid surface patches. Geom. Dedicata 168, 1 (2014), 265--289. Google ScholarGoogle ScholarCross RefCross Ref
  11. Michael R. Jimenez, Christian Müller, and Helmut Pottmann. 2020. Discretizations of Surfaces with Constant Ratio of Principal Curvatures. Discrete Comput. Geom. 63, 3 (2020), 670--704.Google ScholarGoogle ScholarCross RefCross Ref
  12. Wolfgang Kühnel. 2003. Differentialgeometrie (second ed.). Friedr. Vieweg & Sohn, Braunschweig. viii+256 pages. Kurven---Flächen---Mannigfaltigkeiten.Google ScholarGoogle Scholar
  13. Juan Monterde. 2004. Bézier surfaces of minimal area: The Dirichlet approach. Computer Aided Geometric Design 21, 2 (2004), 117 -- 136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Alvaro Pámpano. 2020. A variational characterization of profile curves of invariant linear Weingarten surfaces. Differential Geom. Appl. 68 (2020), 101564, 27.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming Zhang, and Wenping Wang. 2012. Robust Modeling of Constant Mean Curvature Surfaces. ACM Trans. Graph. 31, 4, Article 85 (2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Qing Pan and Guoliang Xu. 2011. Construction of minimal subdivision surface with a given boundary. Computer-Aided Design 43, 4 (2011), 374 -- 380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Davide Pellis, Martin Kilian, Hui Wang, Caigui Jiang, Christian Müller, and Helmut Pottmann. 2020a. Architectural freeform surfaces designed for cost-effective paneling through mold re-use. In Advances in Architectural Geometry.Google ScholarGoogle Scholar
  18. Davide Pellis, Hui Wang, Florian Rist, Martin Kilian, Helmut Pottmann, and Christian Müller. 2020b. Principal Symmetric Meshes. ACM Trans. Graphics 39, 4 (2020), 127:1--127:17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experiment. Math. 2, 1 (1993), 15--36. https://projecteuclid.org:443/euclid.em/1062620735Google ScholarGoogle ScholarCross RefCross Ref
  20. Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. 2015. Architectural Geometry. Computers and Graphics 47 (2015), 145--164.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. 2002. Bézier and B-Spline Techniques. Springer-Verlag.Google ScholarGoogle Scholar
  22. Eike Schling. 2018. Repetitive Structures. Ph.D. Dissertation. TU Munich.Google ScholarGoogle Scholar
  23. Eike Schling, Martin Kilian, Hui Wang, Denis Schikore, and Helmut Pottmann. 2018. Design and construction of curved support structures with repetitive parameters. In Adv. in Architectural Geometry, Lars Hesselgren et al. (Ed.). Klein Publ. Ltd, 140--165.Google ScholarGoogle Scholar
  24. Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans. Graph. 33, 4 (2014), 70:1--70:9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Xavier Tellier. 2020. Morphogenesis of curved structural envelopes under fabrication constraints. Ph.D. Dissertation. Univ. Paris-Est.Google ScholarGoogle Scholar
  26. Xavier Tellier, Cyril Douthe, Laurent Hauswirth, and Olivier Baverel. 2019. Linear Weingarten surfaces for conceptual design of double-curvature envelopes. In Proceedings Int. Symposium on Conceptual Design of Structures, Madrid.Google ScholarGoogle Scholar
  27. Bruce van Brunt and Katina Grant. 1994. Hyperbolic Weingarten Surfaces. Math. Proc. Camb. Phil. Soc. 116 (1994), 489--504.Google ScholarGoogle ScholarCross RefCross Ref
  28. Bruce van Brunt and Katina Grant. 1996. Potential applications of Weingarten surfaces in CAGD, Part I: Weingarten surfaces and surface shape investigation. Computer Aided Geometric Design 13, 6 (1996), 569 -- 582.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Konrad Voss. 1959. Über geschlossene Weingartensche Flächen. Math. Annalen 138 (1959), 42--54.Google ScholarGoogle ScholarCross RefCross Ref
  30. Julius Weingarten. 1861. Über eine Klasse aufeinander abwickelbarer Flächen. J. reine u. angewandte Mathematik 59 (1861), 382--393.Google ScholarGoogle Scholar
  31. Gang Xu and Guozhao Wang. 2010. Quintic parametric polynomial minimal surfaces and their properties. Differential Geometry and its Applications 28, 6 (2010), 697 -- 704.Google ScholarGoogle Scholar
  32. Gang Xu, Yaguang Zhu, Guozhao Wang, Andre Galligo, Li Zhang, and Kin chuen Hui. 2015. Explicit form of parametric polynomial minimal surfaces with arbitrary degree. Appl. Math. Comput. 259 (2015), 124 -- 131.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computational design of weingarten surfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader