skip to main content
research-article
Open Access

Reliable feature-line driven quad-remeshing

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We present a new algorithm for the semi-regular quadrangulation of an input surface, driven by its line features, such as sharp creases. We define a perfectly feature-aligned cross-field and a coarse layout of polygonal-shaped patches where we strictly ensure that all the feature-lines are represented as patch boundaries. To be able to consistently do so, we allow non-quadrilateral patches and T-junctions in the layout; the key is the ability to constrain the layout so that it still admits a globally consistent, T-junction-free, and pure-quad internal tessellation of its patches. This requires the insertion of additional irregular-vertices inside patches, but the regularity of the final-mesh is safeguarded by optimizing for both their number and for their reciprocal alignment. In total, our method guarantees the reproduction of feature-lines by construction, while still producing good quality, isometric, pure-quad, conforming meshes, making it an ideal candidate for CAD models. Moreover, the method is fully automatic, requiring no user intervention, and remarkably reliable, requiring little assumptions on the input mesh, as we demonstrate by batch processing the entire Thingi10K repository, with less than 0.5% of the attempted cases failing to produce a usable mesh.

Skip Supplemental Material Section

Supplemental Material

3450626.3459941.mp4

References

  1. David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013a. Integer-grid maps for reliable quad meshing. ACM Trans. Graph 32, 4 (2013), 98:1--98:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization of Quadrilateral Meshes. Comput. Graph. Forum 30, 2 (2011), 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  3. David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Cláudio T. Silva, Marco Tarini, and Denis Zorin. 2013b. Quad-Mesh Generation and Processing: A Survey. Comput. Graph. Forum 32, 6 (2013), 51--76.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3 (2009), 77.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Marcel Campen. 2017. Partitioning Surfaces Into Quadrilateral Patches: A Survey. Comput. Graph. Forum 36, 8 (2017), 567--588.Google ScholarGoogle ScholarCross RefCross Ref
  6. Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual loops meshing: quality quad layouts on manifolds. ACM Trans. Graph. 31, 4 (2012), 110:1--110:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized global parametrization. ACM Trans. Graph 34, 6 (2015), 192:1--192:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical Anisotropic Geodesy. Comput. Graph. Forum 32, 5 (2013), 63--71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Paolo Cignoni, Guido Ranzuglia, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Marco Di Benedetto, Fabio Ganovelli, Giorgio Marcias, Gianpaolo Palma, Nico Pietroni, Federico Ponchio, Luigi Malomo, Marco Tarini, and Roberto Scopigno. 2013. MeshLab: an Open-Source Mesh Processing Tool. http://www.meshlab.net.Google ScholarGoogle Scholar
  10. CNR. 2013. The Visualization and Computer Graphics Library. http://vcg.isti.cnr.it/vcglib/.Google ScholarGoogle Scholar
  11. Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. 2012. Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes. IEEE Trans. Vis. Comput. Graph 18, 6 (2012), 914--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Designing N-PolyVector Fields with Complex Polynomials. Comput. Graph. Forum 33, 5 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable PolyVector fields. ACM Trans. Graph 34, 4 (2015), 38:1--38:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Xianzhong Fang, Hujun Bao, Yiying Tong, Mathieu Desbrun, and Jin Huang. 2018. Quadrangulation through Morse-Parameterization Hybridization. ACM Trans. Graph. 37, 4, Article 92 (July 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http://www.gurobi.comGoogle ScholarGoogle Scholar
  16. Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. 1993. Mesh Optimization. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (Anaheim, CA) (SIGGRAPH '93). Association for Computing Machinery, New York, NY, USA, 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jingwei Huang, Yichao Zhou, Matthias Niessner, Jonathan Richard Shewchuk, and Leonidas J. Guibas. 2018. QuadriFlow: A Scalable and Robust Method for Quadrangulation. Computer Graphics Forum 37, 5 (2018), 147--160. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13498 Google ScholarGoogle ScholarCross RefCross Ref
  18. Alec Jacobson, Daniele Panozzo, et al. 2013. libigl: A simple C++ geometry processing library. http://igl.ethz.ch/projects/libigl/.Google ScholarGoogle Scholar
  19. Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant field-aligned meshes. ACM Trans. Graph. 34, 6 (2015), 189:1--189:15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface Parameterization using Branched Coverings. Comput. Graph. Forum 26, 3 (2007), 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  21. Marco Livesu, Nico Pietroni, Enrico Puppo, Alla Sheffer, and Paolo Cignoni. 2020. LoopyCuts: practical feature-preserving block decomposition for strongly hex-dominant meshing. ACM Trans. Graph 39, 4 (2020), 121.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Albert Matveev, Alexey Artemov, Ruslan Rakhimov, Gleb Bobrovskikh, Daniele Panozzo, Denis Zorin, and Evgeny Burnaev. 2020. DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes. arXiv:2011.15081 [cs.CV]Google ScholarGoogle Scholar
  23. Alessandro Muntoni and Stefano Nuvoli. 2021. CG3Lib: A C++ geometry processing library. Google ScholarGoogle ScholarCross RefCross Ref
  24. Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33, 4 (2014), 135:1--135:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ashish Myles and Denis Zorin. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4, Article 105 (July 2013), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stefano Nuvoli, Alex Hernandez, Claudio Esperança, Riccardo Scateni, Paolo Cignoni, and Nico Pietroni. 2019. QuadMixer: layout preserving blending of quadrilateral meshes. ACM Trans. Graph 38, 6 (2019), 180:1--180:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Daniele Panozzo, Yaron Lipman, Enrico Puppo, and Denis Zorin. 2012. Fields on symmetric surfaces. ACM Trans. Graph 31, 4 (2012), 111:1--111:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Daniele Panozzo, Enrico Puppo, Marco Tarini, Nico Pietroni, and Paolo Cignoni. 2011. Automatic Construction of Quad-Based Subdivision Surfaces using Fitmaps. IEEE Transaction on Visualization and Computer Graphics 17, 10 (october 2011), 1510--1520. Google ScholarGoogle ScholarCross RefCross Ref
  29. Nico Pietroni, Enrico Puppo, Giorgio Marcias, Roberto Scopigno, and Paolo Cignoni. 2016. Tracing Field-Coherent Quad Layouts. Comput. Graph. Forum 35, 7 (2016), 485--496.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nico Pietroni, Davide Tonelli, Enrico Puppo, Maurizio Froli, Roberto Scopigno, and Paolo Cignoni. 2015. Statics Aware Grid Shells. Comput. Graph. Forum 34, 2 (2015), 627--641.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Faniry H. Razafindrazaka and Konrad Polthier. 2017. Optimal base complexes for quadrilateral meshes. Computer Aided Geometric Design 52-53 (2017), 63 -- 74. Geometric Modeling and Processing 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Faniry H. Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. 2015. Perfect Matching Quad Layouts for Manifold Meshes. Comput. Graph. Forum 34, 5 (2015), 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nico Schertler, Daniele Panozzo, Stefan Gumhold, and Marco Tarini. 2018. Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes. ACM Trans. Graph. 37, 4, Article 155 (July 2018), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. CJ Stimpson, CD Ernst, P Knupp, PP Pébay, and D Thompson. 2007. The Verdict library reference manual.Google ScholarGoogle Scholar
  36. Kenshi Takayama, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Pattern-Based Quadrangulation for N-Sided Patches. Comput. Graph. Forum 33, 5 (2014), 177--184.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Marco Tarini. 2021. Closed-form Quadrangulation of N-Sided Patches. arXiv:2101.11569 [cs.GR]Google ScholarGoogle Scholar
  38. Marco Tarini, Nico Pietroni, Paolo Cignoni, Daniele Panozzo, and Enrico Puppo. 2010. Practical quad mesh simplification. Comput. Graph. Forum 29, 2 (2010), 407--418.Google ScholarGoogle ScholarCross RefCross Ref
  39. Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30, 6 (2011), 142:1--142:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni. 2016. Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve Skeleton. ACM Trans. Graph. 35, 1, Article 6 (Dec. 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes, Klaus Hildebrandt, Mirela Ben-Chen Technion, and Daniele Panozzo. 2017. Directional Field Synthesis, Design, and Processing. In ACM SIGGRAPH 2017 Courses (Los Angeles, California) (SIGGRAPH '17). Association for Computing Machinery, New York, NY, USA, Article 12, 30 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Paul Zhang, Josh Vekhter, Edward Chien, David Bommes, Etienne Vouga, and Justin Solomon. 2020. Octahedral Frames for Feature-Aligned Cross Fields. ACM Trans. Graph. 39, 3 (2020), 25:1--25:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv:1605.04797 [cs.GR]Google ScholarGoogle Scholar

Index Terms

  1. Reliable feature-line driven quad-remeshing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader