skip to main content
research-article

WRAPD: weighted rotation-aware ADMM for parameterization and deformation

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Local-global solvers such as ADMM for elastic simulation and geometry optimization struggle to resolve large rotations such as bending and twisting modes, and large distortions in the presence of barrier energies. We propose two improvements to address these challenges. First, we introduce a novel local-global splitting based on the polar decomposition that separates the geometric nonlinearity of rotations from the material nonlinearity of the deformation energy. The resulting ADMM-based algorithm is a combination of an L-BFGS solve in the global step and proximal updates of element stretches in the local step. We also introduce a novel method for dynamic reweighting that is used to adjust element weights at runtime for improved convergence. With both improved rotation handling and element weighting, our algorithm is considerably faster than state-of-the-art approaches for quasi-static simulations. It is also much faster at making early progress in parameterization problems, making it valuable as an initializer to jump-start second-order algorithms.

Skip Supplemental Material Section

Supplemental Material

3450626.3459942.mp4
a82-brown.mp4

References

  1. Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication. ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Martin Benning, Florian Knoll, Carola-Bibiane Schönlieb, and Tuomo Valkonen. 2016. Preconditioned ADMM with Nonlinear Operator Constraint. In System Modeling and Optimization, Lorena Bociu, Jean-Antoine Désidéri, and Abderrahmane Habbal (Eds.). Springer International Publishing, Cham, 117--126.Google ScholarGoogle Scholar
  3. Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. A Quadratic Bending Model for Inextensible Surfaces. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (SGP '06). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 227--230. http://dl.acm.org/citation.cfm?id=1281957.1281987Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Scientific Computing 41, 1 (2019), A380--A401. arXiv:https://doi.org/10.1137/17M1147615 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020. State-of-the-Art Sparse Direct Solvers. (2020), 3--33. Google ScholarGoogle ScholarCross RefCross Ref
  6. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31, 5 (Aug. 2012), 1657--1667. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-Reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article Article 80 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3, Article 22 (Oct. 2008), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Claici, M. Bessmeltsev, S. Schaefer, and J. Solomon. 2017. Isometry-Aware Preconditioning for Mesh Parameterization. Comput. Graph. Forum 36, 5 (Aug. 2017), 37--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Anqi Fu, Junzi Zhang, and Stephen Boyd. 2020. Anderson Accelerated Douglas-Rachford Splitting. SIAM Journal on Scientific Computing 42, 6 (2020), A3560--A3583.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M. Teran. 2015. Optimization Integrator for Large Time Steps. IEEE Transactions on Visualization and Computer Graphics 21, 10 (Oct. 2015), 1103--1115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Augmentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6, Article 186 (Nov. 2017), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Martin Komaritzan and Mario Botsch. 2018. Projective Skinning. In Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.Google ScholarGoogle Scholar
  16. Martin Komaritzan and Mario Botsch. 2019. Fast Projective Skinning. In Motion, Interaction and Games (MIG '19). Association for Computing Machinery, New York, NY, USA, Article 22, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ligang Liu, Chunyang Ye, Ruiqi Ni, and Xiao-Ming Fu. 2018. Progressive Parameterizations. ACM Transactions on Graphics(SIGGRAPH) 37, 4 (2018).Google ScholarGoogle Scholar
  19. Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2008. A Local/Global Approach to Mesh Parameterization. In Proceedings of the Symposium on Geometry Processing (SGP '08). Eurographics Association, Goslar, DEU, 1495--1504.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 4, Article 116a (May 2017), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011. Example-based Elastic Materials. ACM Trans. Graph. 30, 4, Article 72 (July 2011), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective Dynamics: Fast Simulation of General Constitutive Models. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '16). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 21--28. http://dl.acm.org/citation.cfm?id=2982818.2982822Google ScholarGoogle Scholar
  23. Wenqing Ouyang, Yue Peng, Yuxin Yao, Juyong Zhang, and Bailin Deng. 2020. Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 221--239.Google ScholarGoogle Scholar
  24. Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE Transactions on Visualization and Computer Graphics 23, 10 (Oct 2017), 2222--2234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018. Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM Trans. Graph. 37, 4, Article 42 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017. Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 37a (April 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Geometric Optimization via Composite Majorization. ACM Trans. Graph. 36, 4, Article 38 (July 2017), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Olga Sorkine and Marc Alexa. 2007. As-Rigid-as-Possible Surface Modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP '07). Eurographics Association, Goslar, DEU, 109--116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jian-Ping Su, Xiao-Ming Fu, and Ligang Liu. 2019. Practical Foldover-Free Volumetric Mapping Construction. Computer Graphics Forum 38, 7 (2019), 287--297. Google ScholarGoogle ScholarCross RefCross Ref
  30. Jian-Ping Su, Chunyang Ye, Ligang Liu, and Xiao-Ming Fu. 2020. Efficient Bijective Parameterizations. ACM Trans. Graph. 39, 4, Article 111 (July 2020), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In Proceedings of the 9th International Conference on Motion in Games (MIG '16). ACM, New York, NY, USA, 79--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Juyong Zhang, Yue Peng, Wenqing Ouyang, and Bailin Deng. 2019. Accelerating ADMM for Efficient Simulation and Optimization. ACM Trans. Graph. 38, 6, Article Article 163 (Nov. 2019), 21 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-newton for Distortion Optimization. ACM Trans. Graph. 37, 4, Article 40 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. WRAPD: weighted rotation-aware ADMM for parameterization and deformation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader