10.1145/3452143.3465513acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Calcium: Computing in Exact Real and Complex Fields

Published:18 July 2021Publication History

ABSTRACT

Calcium is a C library for real and complex numbers in a form suitable for exact algebraic and symbolic computation. Numbers are represented as elements of fields Q(a1,...,an) where the extension numbers ak may be algebraic or transcendental. The system combines efficient field operations with automatic discovery and certification of algebraic relations, resulting in a practical computational model of R and C in which equality is rigorously decidable for a large class of numbers.

References

  1. David H. Bailey, Jonathan M. Borwein, and Alexander D. Kaiser. 2014. Automated simplification of large symbolic expressions. Journal of Symbolic Computation, Vol. 60 (Jan. 2014), 120--136. https://doi.org/10.1016/j.jsc.2013.09.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Hans-J Boehm. 2020. Towards an API for the real numbers. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 562--576. https://doi.org/10.1145/3395658Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Wieb Bosma, John Cannon, and Catherine Playoust. 1997. The Magma Algebra System I: The User Language. Journal of Symbolic Computation, Vol. 24, 3-4 (Sept. 1997), 235--265. https://doi.org/10.1006/jsco.1996.0125Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alin Bostan, Philippe Flajolet, Bruno Salvy, and É ric Schost. 2006. Fast computation of special resultants. Journal of Symbolic Computation, Vol. 41, 1 (Jan. 2006), 1--29. https://doi.org/10.1016/j.jsc.2005.07.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Jacques Carette. 2004. Understanding expression simplification. In Proceedings of the 2004 international symposium on Symbolic and algebraic computation - ISSAC '04. ACM Press. https://doi.org/10.1145/1005285.1005298Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jacques Carette. 2020. Zero equivalence in computer algebra systems. Mathematics Stack Exchange, https://math.stackexchange.com/q/3607862 .Google ScholarGoogle Scholar
  7. Timothy Y. Chow. 1999. What Is a Closed-Form Number? The American Mathematical Monthly, Vol. 106, 5 (May 1999), 440--448. https://doi.org/10.1080/00029890.1999.12005066Google ScholarGoogle ScholarCross RefCross Ref
  8. Henri Cohen. 1996. A Course in Computational Algebraic Number Theory. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02945-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. 2019. Singular 4-1-2 -- A computer algebra system for polynomial computations. http://www.singular.uni-kl.de .Google ScholarGoogle Scholar
  10. Jean Della Dora, Claire Dicrescenzo, and Dominique Duval. 1985. About a new method for computing in algebraic number fields. In EUROCAL textquotesingle85. Springer Berlin Heidelberg, 289--290. https://doi.org/10.1007/3-540-15984-3_279Google ScholarGoogle Scholar
  11. Claus Fieker, William Hart, Tommy Hofmann, and Fredrik Johansson. 2017. Nemo/Hecke: computer algebra and number theory packages for the Julia programming language. In Proc. of the 42nd Intl. Symposium on Symbolic and Algebraic Computation (ISSAC '17). ACM, 157--164. https://doi.org/10.1145/3087604.3087611Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S Fischler and T. Rivoal. 2019. Effective algebraic independence of values of E-functions. arxiv: 1906.05589 [math.NT]Google ScholarGoogle Scholar
  13. William B. Hart. 2010. Fast Library for Number Theory: An Introduction. In Mathematical Software textendash ICMS 2010. Springer Berlin Heidelberg, 88--91. https://doi.org/10.1007/978-3-642-15582-6_18Google ScholarGoogle ScholarCross RefCross Ref
  14. William B. Hart. 2015. ANTIC: Algebraic number theory in C. Computeralgebra-Rundbrief: Vol. 56 (2015).Google ScholarGoogle Scholar
  15. Fredrik Johansson. 2017. Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic. IEEE Trans. Comput., Vol. 66, 8 (Aug. 2017), 1281--1292. https://doi.org/10.1109/tc.2017.2690633Google ScholarGoogle Scholar
  16. Manuel Kauers. 2005. Algorithms for Nonlinear Higher Order Difference Equations. Ph.D. Dissertation. RISC, Johannes Kepler University, Linz. http://www.algebra.uni-linz.ac.at/people/mkauers/publications/kauers05c.pdf.Google ScholarGoogle Scholar
  17. Aaron Meurer et al. 2017. SymPy: symbolic computing in Python. PeerJ Computer Science, Vol. 3 (Jan. 2017), e103. https://doi.org/10.7717/peerj-cs.103Google ScholarGoogle Scholar
  18. Michael Monagan and Roman Pearce. 2006. Rational simplification modulo a polynomial ideal. In Proceedings of the 2006 international symposium on Symbolic and algebraic computation - ISSAC '06. ACM Press. https://doi.org/10.1145/1145768.1145809Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Joel Moses. 1971. Algebraic simplification: a guide for the perplexed. Commun. ACM, Vol. 14, 8 (Aug. 1971), 527--537. https://doi.org/10.1145/362637.362648Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Norbert Müller. 2001. The iRRAM: Exact Arithmetic in C++. In Computability and Complexity in Analysis. Springer Berlin Heidelberg, 222--252. https://doi.org/10.1007/3-540-45335-0_14Google ScholarGoogle Scholar
  21. Daniel Richardson. 1992. The elementary constant problem. In Papers from the international symposium on Symbolic and algebraic computation - ISSAC '92. ACM Press. https://doi.org/10.1145/143242.143284Google ScholarGoogle Scholar
  22. Daniel Richardson. 1995. A simplified method of recognizing zero among elementary constants. In Proceedings of the 1995 international symposium on Symbolic and algebraic computation - ISSAC '95. ACM Press. https://doi.org/10.1145/220346.220360Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Daniel Richardson. 1997. How to Recognize Zero. Journal of Symbolic Computation, Vol. 24, 6 (Dec. 1997), 627--645. https://doi.org/10.1006/jsco.1997.0157Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Daniel Richardson. 2007. Zero Tests for Constants in Simple Scientific Computation. Mathematics in Computer Science, Vol. 1, 1 (Oct. 2007), 21--37. https://doi.org/10.1007/s11786-007-0002-xGoogle ScholarGoogle ScholarCross RefCross Ref
  25. Daniel Richardson. 2009. Recognising zero among implicitly defined elementary numbers. Unpublished preprint.Google ScholarGoogle Scholar
  26. Daniel Richardson and John Fitch. 1994. The identity problem for elementary functions and constants. In Proceedings of the international symposium on Symbolic and algebraic computation - ISSAC '94. ACM Press. https://doi.org/10.1145/190347.190429Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Allan Steel. 2002. A New Scheme for Computing with Algebraically Closed Fields. In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 491--505. https://doi.org/10.1007/3-540-45455-1_38Google ScholarGoogle Scholar
  28. Allan Steel. 2010. Computing with algebraically closed fields. Journal of Symbolic Computation, Vol. 45, 3 (March 2010), 342--372. https://doi.org/10.1016/j.jsc.2009.09.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. The Sage Developers. 2020. SageMath, the Sage Mathematics Software System (Version 9.0). https://www.sagemath.org.Google ScholarGoogle Scholar
  30. The PARI Group 2019. PARI/GP version 2.11.2. The PARI Group, University of Bordeaux. http://pari.math.u-bordeaux.fr/.Google ScholarGoogle Scholar
  31. Joris van der Hoeven. 1995. Automatic numerical expansions. In Proc. of the conference "Real numbers and computers", Saint-Étienne, France. 261--274.Google ScholarGoogle Scholar
  32. Joris van der Hoeven. 1997. Automatic asymptotics. Ph.D. Dissertation. École polytechnique, Palaiseau, France.Google ScholarGoogle Scholar
  33. Joris van der Hoeven. 2006 a. Computations with effective real numbers. Theoretical Computer Science, Vol. 351, 1 (2006), 52--60. https://doi.org/10.1016/j.tcs.2005.09.060Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Joris van der Hoeven. 2006 b. Effective real numbers in Mmxlib. In Proceedings of the 2006 international symposium on Symbolic and algebraic computation - ISSAC '06. ACM Press. https://doi.org/10.1145/1145768.1145795Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jihun Yu, Chee Yap, Zilin Du, Sylvain Pion, and Hervé Brönnimann. 2010. The Design of Core 2: A Library for Exact Numeric Computation in Geometry and Algebra. In Mathematical Software textendash ICMS 2010. Springer Berlin Heidelberg, 121--141. https://doi.org/10.1007/978-3-642-15582-6_24Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Calcium: Computing in Exact Real and Complex Fields

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          ISSAC '21: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation
          July 2021
          379 pages
          ISBN:9781450383820
          DOI:10.1145/3452143

          Copyright © 2021 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 18 July 2021

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate350of728submissions,48%
        • Article Metrics

          • Downloads (Last 12 months)16
          • Downloads (Last 6 weeks)7

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!