skip to main content
research-article

Imaginary Stroke Movement Measurement and Visualization

Authors Info & Claims
Published:02 August 2021Publication History
Skip Abstract Section

Abstract

When viewing visual artworks, one can feel the suggestive movement from the brushstrokes. This phenomenon has been recorded widely in literature on art theory, and its physiological basis has been found in neuroaesthetic studies, but there is no method to measure its details at present. In this paper, two experiments are designed to measure the velocity sense and the trace sense, which are the instantaneous and cumulative representations of the same content---the kinetic feeling of strokes, respectively. Furthermore, various visualizations are designed for the two kinds of experimental data as artistic recreation of traditional artworks. In addition, the quantitative analysis is performed on the imaginary stroke movement, showing that imaginary stroke movement can be studied by mathematics.

Skip Supplemental Material Section

Supplemental Material

References

  1. Daniel Berio, Memo Akten, Frederic Fol Leymarie, Mick Grierson, and Réjean Plamondon. 2017a. Calligraphic stylisation learning with a physiologically plausible model of movement and recurrent neural networks. In Proceedings of the 4th International Conference on Movement Computing (MOCO '17), 1--8. DOI: https://doi.org/10.1145/3077981.3078049Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Daniel Berio, Sylvain Calinon, and Frederic Fol Leymarie. 2017b. Generating calligraphic trajectories with model predictive control. In Proceedings of Graphics Interface 2017, May 16--19, 2017, Edmonton, Alberta, 132--139. DOI: https://doi.org/10.20380/GI2017.17Google ScholarGoogle Scholar
  3. Yihang Bo, Jinhui Yu, and Kang Zhang. 2018. Computational aesthetics and applications. Vis. Comput. Ind. Biomed. Art 1, 6. DOI: https://doi.org/10.1186/s42492-018-0006-1Google ScholarGoogle ScholarCross RefCross Ref
  4. Rebecca Chamberlain, Caitlin Mullin, Daniel Berio, Frederic Fol Leymarie, and Johan Wagemans. 2020. Aesthetics of graffiti: Comparison to text-based and pictorial artforms. Empirical Studies of the Arts. DOI: https://doi.org/10.1177/0276237420951415Google ScholarGoogle Scholar
  5. Anjan Chatterjee and Oshin Vartanian. 2016. Neuroscience of aesthetics. Ann. N.Y. Acad. Sci. 1369, 1 (April 2016), 172--194. DOI: https://doi.org/10.1111/nyas.13035Google ScholarGoogle ScholarCross RefCross Ref
  6. ZhenBao Fan, Kang Zhang, and XianJun Sam Zheng. 2019. Evaluation and analysis of white space in Wu Guanzhong's Chinese paintings. Leonardo 52, 2 (April 1, 2019), 111--116. DOI: https://doi.org/10.1162/leon_a_01409Google ScholarGoogle ScholarCross RefCross Ref
  7. David Freedberg and Vittorio Gallese. 2007. Motion, emotion and empathy in esthetic experience. Trends in Cognitive Sciences 11, 5 (May 1, 2007), 197--203. DOI: https://doi.org/10.1016/j.tics.2007.02.003Google ScholarGoogle Scholar
  8. Vittorio Gallese. 2019. Embodied simulation: Its bearing on aesthetic experience and the dialogue between neuroscience and the humanities. Gestalt Theory 41, 2 (July 2019), 113--127. DOI: https://doi.org/10.2478/gth-2019-0013Google ScholarGoogle ScholarCross RefCross Ref
  9. Günther Knoblich, Eva Seigerschmidt, Rüdiger Flach, and Wolfgang Prinz. 2002. Authorship effects in the prediction of handwriting strokes: Evidence for action simulation during action perception. Q. J. Exp. Psychol. Sect. A Hum. Exp. Psychol. 55, 1027--1046. DOI: https://doi.org/10.1080/02724980143000631Google ScholarGoogle ScholarCross RefCross Ref
  10. Lothar Ledderose. 1980. Mi Fu and the Classical Tradition of Chinese Calligraphy, [xiii], 131 pp., front., 50 pis. Princeton, NJ: Princeton University Press, 1979. Bull. Sch. Orient. African Stud. DOI: https://doi.org/10.1017/s0041977x00137826Google ScholarGoogle Scholar
  11. Stephen E. Palmer, Karen B. Schloss, and Jonathan Sammartino. 2012. Visual aesthetics and human preference. Annual Review of Psychology 64. DOI: https://doi.org/10.1146/annurev-psych-120710-100504Google ScholarGoogle Scholar
  12. Jaume Rigau, Miquel Feixas, and Mateu Sbert. 2008. Informational aesthetics measures. IEEE Computer Graphics and Applications 28, 2 (March 2008), 24--34. DOI: https://doi.org/10.1109/MCG.2008.34Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Beatrice Sbriscia-Fioretti, Cristina Berchio, David Freedberg, Vittorio Gallese, and Maria Alessandra Umiltà. 2013. ERP modulation during observation of abstract paintings by Franz Kline. PLOS ONE 8, 10, e75241. DOI: https://doi.org/10.1371/journal.pone.0075241Google ScholarGoogle ScholarCross RefCross Ref
  14. Ines Schindler, Georg Hosoya, Winfried Menninghaus, Ursula Beermann, Valentin Wagner, Michael Eid, and Klaus R. Scherer. 2017. Measuring aesthetic emotions: A review of the literature and a new assessment tool. PLOS ONE 12. DOI: https://doi.org/10.1371/journal.pone.0178899Google ScholarGoogle Scholar
  15. Luca F. Ticini, Laura Rachman, Jerome Pelletier, and Stephanie Dubal. 2014. Enhancing aesthetic appreciation by priming canvases with actions that match the artist's painting style. Front. Hum. Neurosci. 8, 391. DOI: https://doi.org/10.3389/fnhum.2014.00391Google ScholarGoogle ScholarCross RefCross Ref
  16. Maria Alessandra Umiltà, Cristina Berchio, Mariateresa Sestito, David Freedberg, and Vittorio Gallese. 2012. Abstract art and cortical motor activation: an EEG study. Frontiers in Human Neuroscience 6.Google ScholarGoogle Scholar
  17. Li-Jie Yang, Tian-Chen Xu, Xiao-Shan Li, and En-Hua Wu. 2014. Feature-oriented writing process reproduction of Chinese calligraphic artwork. In SIGGRAPH Asia 2014 Technical Briefs. Article 5, 1--4. DOI: https://doi.org/10.1145/2669024.2669032Google ScholarGoogle Scholar

Index Terms

  1. Imaginary Stroke Movement Measurement and Visualization

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Proceedings of the ACM on Computer Graphics and Interactive Techniques
          Proceedings of the ACM on Computer Graphics and Interactive Techniques  Volume 4, Issue 2
          July 2021
          128 pages
          EISSN:2577-6193
          DOI:10.1145/3479233
          Issue’s Table of Contents

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 August 2021
          Published in pacmcgit Volume 4, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed
        • Article Metrics

          • Downloads (Last 12 months)45
          • Downloads (Last 6 weeks)7

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format