skip to main content
10.1145/3466752.3480059acmconferencesArticle/Chapter ViewAbstractPublication PagesmicroConference Proceedingsconference-collections
research-article

ADAPT: Mitigating Idling Errors in Qubits via Adaptive Dynamical Decoupling

Published: 17 October 2021 Publication History

Abstract

The fidelity of applications on near-term quantum computers is limited by hardware errors. In addition to errors that occur during gate and measurement operations, a qubit is susceptible to idling errors, which occur when the qubit is idle and not actively undergoing any operations. To mitigate idling errors, prior works in the quantum devices community have proposed Dynamical Decoupling (DD), that reduces stray noise on idle qubits by continuously executing a specific sequence of single-qubit operations that effectively behave as an identity gate. Unfortunately, existing DD protocols have been primarily studied for individual qubits and their efficacy at the application-level is not yet fully understood.
Our experiments show that naively enabling DD for every idle qubit does not necessarily improve fidelity. While DD reduces the idling error-rates for some qubits, it increases the overall error-rate for others due to the additional operations of the DD protocol. Furthermore, idling errors are program-specific and the set of qubits that benefit from DD changes with each program. To enable robust use of DD, we propose Adaptive Dynamical Decoupling (ADAPT), a software framework that estimates the efficacy of DD for each qubit combination and judiciously applies DD only to the subset of qubits that provide the most benefit. ADAPT employs a Decoy Circuit, which is structurally similar to the original program but with a known solution, to identify the DD sequence that maximizes the fidelity. To avoid the exponential search of all possible DD combinations, ADAPT employs a localized algorithm that has linear complexity in the number of qubits. Our experiments on IBM quantum machines (with 16-27 qubits) show that ADAPT improves the application fidelity by 1.86x on average and up-to 5.73x compared to no DD and by 1.2x compared to DD on all qubits.

References

[1]
Scott Aaronson and Daniel Gottesman. 2004. Improved simulation of stabilizer circuits. Physical Review A 70, 5 (Nov 2004). https://doi.org/10.1103/physreva.70.052328
[2]
Mustafa Ahmed Ali Ahmed, Gonzalo A Alvarez, and Dieter Suter. 2013. Robustness of dynamical decoupling sequences. Physical Review A 87, 4 (2013), 042309.
[3]
Google Quantum AI. 2021. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 7867 (2021), 383.
[4]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505–510.
[5]
Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard. 2019. Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum 3(2019), 181.
[6]
Jonas Bylander, Simon Gustavsson, Fei Yan, Fumiki Yoshihara, Khalil Harrabi, George Fitch, David G Cory, Yasunobu Nakamura, Jaw-Shen Tsai, and William D Oliver. 2011. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nature Physics 7, 7 (2011), 565–570.
[7]
Zijun Chen, Kevin J Satzinger, Juan Atalaya, Alexander N Korotkov, Andrew Dunsworth, Daniel Sank, Chris Quintana, Matt McEwen, Rami Barends, Paul V Klimov, 2021. Exponential suppression of bit or phase flip errors with repetitive error correction. arXiv preprint arXiv:2102.06132(2021).
[8]
Frederic T Chong, Diana Franklin, and Margaret Martonosi. 2017. Programming languages and compiler design for realistic quantum hardware. Nature 549, 7671 (2017), 180.
[9]
International Business Machines Corporation. 2017. Quantum Software Development Kit for writing quantum computing experiments, programs, and applications. https://github.com/QISKit/. [Online; accessed 28-AUGUST-2020].
[10]
Gavin E Crooks. 2018. Performance of the quantum approximate optimization algorithm on the maximum cut problem. arXiv preprint arXiv:1811.08419(2018).
[11]
Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi. 2019. A Case for Multi-Programming Quantum Computers. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 291–303.
[12]
Prashant S Emani, Jonathan Warrell, Alan Anticevic, Stefan Bekiranov, Michael Gandal, Michael J McConnell, Guillermo Sapiro, Alán Aspuru-Guzik, Justin Baker, Matteo Bastiani, 2019. Quantum Computing at the Frontiers of Biological Sciences. arXiv preprint arXiv:1911.07127(2019).
[13]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028(2014).
[14]
Samuele Ferracin, Theodoros Kapourniotis, and Animesh Datta. 2019. Accrediting outputs of noisy intermediate-scale quantum computing devices. New Journal of Physics 21, 11 (2019), 113038.
[15]
Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha Narang. 2018. Qubit Allocation for Noisy Intermediate-Scale Quantum Computers. arXiv preprint arXiv:1810.08291(2018).
[16]
Gian Giacomo Guerreschi and Jongsoo Park. 2018. Two-step approach to scheduling quantum circuits. Quantum Science and Technology(2018).
[17]
Robin Harper and Steven Flammia. 2018. Fault tolerance in the IBM Q Experience. arXiv preprint arXiv:1806.02359(2018).
[18]
Petar Jurcevic, Ali Javadi-Abhari, Lev S Bishop, Isaac Lauer, Daniela F Bogorin, Markus Brink, Lauren Capelluto, Oktay Günlük, Toshinaro Itoko, Naoki Kanazawa, 2020. Demonstration of quantum volume 64 on a superconducting quantum computing system. arXiv preprint arXiv:2008.08571(2020).
[19]
Kaveh Khodjasteh and DA Lidar. 2005. Fault-tolerant quantum dynamical decoupling. Physical review letters 95, 18 (2005), 180501.
[20]
Kaveh Khodjasteh and Daniel A Lidar. 2007. Performance of deterministic dynamical decoupling schemes: Concatenated and periodic pulse sequences. Physical Review A 75, 6 (2007), 062310.
[21]
Emanuel Knill, D Leibfried, R Reichle, J Britton, RB Blakestad, JD Jost, C Langer, R Ozeri, Signe Seidelin, and David J Wineland. 2008. Randomized benchmarking of quantum gates. Physical Review A 77, 1 (2008), 012307.
[22]
Ang Li and Sriram Krishnamoorthy. 2020. Qasmbench: A low-level qasm benchmark suite for nisq evaluation and simulation. preprint arXiv:2005.13018(2020).
[23]
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem for NISQ-era quantum devices. In ASPLOS. 1001–1014.
[24]
Margaret Martonosi and Martin Roetteler. 2019. Next Steps in Quantum Computing: Computer Science’s Role. arXiv preprint arXiv:1903.10541(2019).
[25]
Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. 2016. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics 18, 2 (2016), 023023.
[26]
David C McKay, Christopher J Wood, Sarah Sheldon, Jerry M Chow, and Jay M Gambetta. 2017. Efficient Z gates for quantum computing. Physical Review A 96, 2 (2017), 022330.
[27]
Prakash Murali, Jonathan M Baker, Ali Javadi Abhari, Frederic T Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. arXiv preprint arXiv:1901.11054(2019).
[28]
Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Margaret Martonosi. 2019. Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. In ASPLOS. 1015–1029.
[29]
Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete. 2019. Full-stack, real-system quantum computer studies: architectural comparisons and design insights. In ISCA. 527–540.
[30]
Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020. Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers. arXiv preprint arXiv:2001.02826(2020).
[31]
Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter. 2019. Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation. arXiv preprint arXiv:1903.10963(2019).
[32]
National Academies of Sciences Engineeringand Medicine. 2019. Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC. https://doi.org/10.17226/25196
[33]
Roman Orus, Samuel Mugel, and Enrique Lizaso. 2019. Quantum computing for finance: overview and prospects. Reviews in Physics (2019), 100028.
[34]
Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari. 2020. {UREQA}: Leveraging Operation-Aware Error Rates for Effective Quantum Circuit Mapping on NISQ-Era Quantum Computers. In USENIX ATC. 705–711.
[35]
Tirthak Patel and Devesh Tiwari. 2020. DisQ: a novel quantum output state classification method on IBM quantum computers using openpulse. In Proceedings of the 39th International Conference on Computer-Aided Design. 1–9.
[36]
Tirthak Patel and Devesh Tiwari. 2021. Qraft: reverse your Quantum circuit and know the correct program output. In ASPLOS. 443–455.
[37]
Gerardo A Paz-Silva and DA Lidar. 2013. Optimally combining dynamical decoupling and quantum error correction. Scientific reports 3(2013), 1530.
[38]
Bibek Pokharel, Namit Anand, Benjamin Fortman, and Daniel Lidar. 2018. Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits. arXiv preprint arXiv:1807.08768(2018).
[39]
John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2(2018), 79.
[40]
John Preskill. 2018. Quantum Computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862(2018).
[41]
Marcos Siraichi, Vinicius Fernandes Dos Santos, Sylvain Collange, and Fernando Magno Quintão Pereira. 2018. Qubit Allocation. In CGO 2018-IEEE/ACM International Symposium on Code Generation and Optimization. 1–12.
[42]
Alexandre M Souza, Gonzalo A Alvarez, and Dieter Suter. 2011. Robust dynamical decoupling for quantum computing and quantum memory. Physical review letters 106, 24 (2011), 240501.
[43]
Armands Strikis, Dayue Qin, Yanzhu Chen, Simon C. Benjamin, and Ying Li. 2020. Learning-based quantum error mitigation. arXiv preprint arXiv:2005.07601(2020). arxiv:quant-ph/2005.07601
[44]
Swamit S Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings: Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mistakes. In MICRO. ACM, 253–265.
[45]
Swamit S Tannu and Moinuddin K Qureshi. 2018. A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. arXiv preprint:1805.10224(2018).
[46]
Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating Measurement Errors in Quantum Computers by Exploiting State-Dependent Bias. In MICRO. 279–290.
[47]
Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all qubits are created equal: a case for variability-aware policies for NISQ-era quantum computers. In ASPLOS. 987–999.
[48]
Vinay Tripathi, Huo Chen, Mostafa Khezri, Ka-Wa Yip, EM Levenson-Falk, and Daniel A Lidar. 2021. Suppression of crosstalk in superconducting qubits using dynamical decoupling. arXiv preprint arXiv:2108.04530(2021).
[49]
Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven, Travis S Humble, Rupak Biswas, Eleanor G Rieffel, Alan Ho, and Salvatore Mandrà. 2019. Establishing the Quantum Supremacy Frontier with a 281 Pflop/s Simulation. arXiv preprint arXiv:1905.00444(2019).
[50]
Lorenza Viola, Emanuel Knill, and Seth Lloyd. 1999. Dynamical Decoupling of Open Quantum Systems. Phys. Rev. Lett. 82 (Mar 1999), 2417–2421. Issue 12. https://doi.org/10.1103/PhysRevLett.82.2417
[51]
Wikipedia. 2020. Total Variational Distance. https://en.wikipedia.org/wiki/Total_variation_distance_of_probability_measures. [Online; accessed 7-March-2021].
[52]
Robert Wille, Aaron Lye, and Rolf Drechsler. 2014. Optimal SWAP gate insertion for nearest neighbor quantum circuits. In ASPDAC. IEEE, 489–494.
[53]
Alexander Zlokapa and Alexandru Gheorghiu. 2020. A deep learning model for noise prediction on near-term quantum devices. arXiv preprint:2005.10811(2020).
[54]
Alwin Zulehner, Alexandru Paler, and Robert Wille. 2017. Efficient Mapping of Quantum Circuits to the IBM QX Architectures. arXiv preprint:1712.04722(2017).

Cited By

View all
  • (2025)Incompressible Navier–Stokes solve on noisy quantum hardware via a hybrid quantum–classical schemeComputers & Fluids10.1016/j.compfluid.2024.106507288(106507)Online publication date: Mar-2025
  • (2024)Synergistic Dynamical Decoupling and Circuit Design for Enhanced Algorithm Performance on Near-Term Quantum DevicesEntropy10.3390/e2607058626:7(586)Online publication date: 10-Jul-2024
  • (2024)Calibration and Performance Evaluation of a Superconducting Quantum Processor in an HPC CenterISC High Performance 2024 Research Paper Proceedings (39th International Conference)10.23919/ISC.2024.10528924(1-9)Online publication date: May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
MICRO '21: MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture
October 2021
1322 pages
ISBN:9781450385572
DOI:10.1145/3466752
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 October 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Dynamical decoupling
  2. Idling errors
  3. NISQ
  4. Quantum computing

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • Microsoft PhD Fellowship

Conference

MICRO '21
Sponsor:

Acceptance Rates

Overall Acceptance Rate 484 of 2,242 submissions, 22%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)138
  • Downloads (Last 6 weeks)7
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Incompressible Navier–Stokes solve on noisy quantum hardware via a hybrid quantum–classical schemeComputers & Fluids10.1016/j.compfluid.2024.106507288(106507)Online publication date: Mar-2025
  • (2024)Synergistic Dynamical Decoupling and Circuit Design for Enhanced Algorithm Performance on Near-Term Quantum DevicesEntropy10.3390/e2607058626:7(586)Online publication date: 10-Jul-2024
  • (2024)Calibration and Performance Evaluation of a Superconducting Quantum Processor in an HPC CenterISC High Performance 2024 Research Paper Proceedings (39th International Conference)10.23919/ISC.2024.10528924(1-9)Online publication date: May-2024
  • (2024)Towards High Performance QNNs via Distribution-Based CNOT Gate ReductionACM Transactions on Architecture and Code Optimization10.1145/369587221:4(1-22)Online publication date: 20-Nov-2024
  • (2024)Robust Qubit Mapping Algorithm via Double-Source Optimal Routing on Large Quantum CircuitsACM Transactions on Quantum Computing10.1145/36802915:3(1-26)Online publication date: 19-Sep-2024
  • (2024)Elivagar: Efficient Quantum Circuit Search for ClassificationProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3620665.3640354(336-353)Online publication date: 27-Apr-2024
  • (2024)A Survey of Side-Channel Attacks in Superconducting Quantum Computers2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)10.1109/ISVLSI61997.2024.00074(373-378)Online publication date: 1-Jul-2024
  • (2024)Suppressing Correlated Noise in Quantum Computers via Context-Aware Compiling2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00031(310-324)Online publication date: 29-Jun-2024
  • (2024)Atomique: A Quantum Compiler for Reconfigurable Neutral Atom Arrays2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00030(293-309)Online publication date: 29-Jun-2024
  • (2024)QuTracer: Mitigating Quantum Gate and Measurement Errors by Tracing Subsets of Qubits2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00018(103-117)Online publication date: 29-Jun-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media