10.1145/3469259.3470488acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article
Open Access

Towards Adaptive, Self-Configuring Networked Unmanned Aerial Vehicles

Published:30 July 2021Publication History

ABSTRACT

Networked drones have the potential to transform various applications domains; yet their adoption particularly in indoor and forest environments has been stymied by the lack of accurate maps and autonomous navigation abilities in the absence of GPS, the lack of highly reliable, energy-efficient wireless communications, and the challenges of visually inferring and understanding an environment with resource-limited individual drones. We advocate a novel vision for the research community in the development of distributed, localized algorithms that enable the networked drones to dynamically coordinate to perform adaptive beam forming to achieve high capacity directional aerial communications, and collaborative machine learning to simultaneously localize, map and visually infer the challenging environment, even when individual drones are resource-limited in terms of computation and communication due to payload restrictions.

References

  1. F. Adib, Z. Kabelac, and D. Katabi. 2015. Multi-Person Localization via RF Body Reflections. In 12th USENIX Symposium on Networked Systems Design and Implementation. 279--292.Google ScholarGoogle Scholar
  2. D. Aiger, B. Allen, and A. Golovinskiy. 2017. Large-Scale 3D Scene Classification With Multi-View Volumetric CNN. ArXiv e-prints (Dec. 2017). arXiv:1712.09216 [cs.CV]Google ScholarGoogle Scholar
  3. AirMap. 2021. (2021). http://www.airmap.com.Google ScholarGoogle Scholar
  4. A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath. 2014. Channel estimation and hybrid precoding for millimeter wave cellular systems. In IEEE Journal of Selected Topics in Signal Processing.Google ScholarGoogle Scholar
  5. A. Alkhateeb, G. Leusz, and R. W. Heath. 2015. Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?. In Proceedings of IEEE ICASSP.Google ScholarGoogle Scholar
  6. E. Aryafar and A. K. Haddad. 2015. FD2: a directional full duplex communication system for indoor wireless networks. In Proceedings of IEEE INFOCOM.Google ScholarGoogle Scholar
  7. E. Aryafar, J. Zhu, S. Singh, M. Akdeniz, W. Lee, and N. Himayat. 2016. Method for LoS-nLoS State Identification in mmWave Sector Sweep. In Submitted to United State Patent Office (USPTO), filing number PCT/US2016/066565.Google ScholarGoogle Scholar
  8. J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur. 2006. A Theory of Network Localization. IEEE Transactions on Mobile Computing 5, 12 (Dec 2006), 1663--1678.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Bae, S. H. Lim, J. H. Yoo, and J. W. Choi. 2017. New beam tracking technique for millimeter wave-band communications. In arXiv:1702.00276.Google ScholarGoogle Scholar
  10. G. Balamurugan, J. Valarmathi, and V. P. S. Naidu. 2016. Survey on UAV navigation in GPS denied environments. In 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). 198--204.Google ScholarGoogle ScholarCross RefCross Ref
  11. L. Bottou, F. E. Curtis, and J. Nocedal. 2016. Optimization Methods for Large-Scale Machine Learning. ArXiv e-prints (June 2016). arXiv:1606.04838 [stat.ML]Google ScholarGoogle Scholar
  12. P. R. Chandler, M. Pachter, and S. Rasmussen. 2001. UAV cooperative control. In Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), Vol. 1. 50--55 vol.1.Google ScholarGoogle Scholar
  13. Quan Chen, Hai Zhu, Lei Yang, Xiaoqian Chen, Sofie Pollin, and Evgenii Vinogradov. 2021. Edge Computing Assisted Autonomous Flight for UAV: Synergies between Vision and Communications. IEEE Communications Magazine 59, 1 (2021), 28--33. https://doi.org/10.1109/MCOM.001.2000501Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016).Google ScholarGoogle Scholar
  15. Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture Search: A Survey. Journal of Machine Learning Research 20, 55 (2019), 1--21.Google ScholarGoogle Scholar
  16. J. Engel, V. Koltun, and D. Cremers. 2016. Direct Sparse Odometry. CoRR abs/1607.02565 (2016). arXiv:1607.02565Google ScholarGoogle Scholar
  17. A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson, and L. Tapia. 2017. PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning. ArXiv e-prints (Oct. 2017). arXiv:1710.03937 [cs.AI]Google ScholarGoogle Scholar
  18. B. Gao, Z. Xiao, L. Su, Z. Chen, D. Jin, and L. Zeng. 2015. Multi-device multi-path beamforming training for 60-GHz millimeter-wave communications. In Proceedings of IEEE ICC.Google ScholarGoogle Scholar
  19. X. Gao, L. Dai, Y. Zhang, T. Xie, X. Dai, and Z. Wang. 2017. Fast channel tracking for terahertz beamspace massive MIMO systems. In IEEE Transactions on Vehicular Technology.Google ScholarGoogle Scholar
  20. N. Garcia, H. Wymeersch, and D. Slock. 2017. Optimal robust precoders for tracking the AoD and AoA of a mm-Wave path. In arXiv:1703.10978.Google ScholarGoogle Scholar
  21. Jesus Garza, M. Panduro, Alberto Reyna, G. Romero, and C. Rio. 2016. Design of UAVs-Based 3D Antenna Arrays for a Maximum Performance in Terms of Directivity and SLL. International Journal of Antennas and Propagation 2016 (2016), 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  22. Samira Hayat, Roland Jung, Hermann Hellwagner, Christian Bettstetter, Driton Emini, and Dominik Schnieders. 2021. Edge Computing in 5G for Drone Navigation: What to Offload? IEEE Robotics and Automation Letters 6, 2 (2021), 2571--2578. https://doi.org/10.1109/LRA.2021.3062319Google ScholarGoogle Scholar
  23. G. Hemann, S. Singh, and M. Kaess. 2016. Long-range GPS-denied aerial inertial navigation with LIDAR localization. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1659--1666.Google ScholarGoogle Scholar
  24. A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al. 2019. Searching for mobilenetv3. arXiv preprint arXiv:1905.02244 (2019).Google ScholarGoogle Scholar
  25. S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh. 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. In IEEE Transactions on Communications.Google ScholarGoogle Scholar
  26. IEEE 802.11 WG. 2012. IEEE 802.11ad, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. (2012).Google ScholarGoogle Scholar
  27. J.L.Fargeas, P. Kabamba, and A. Girard. 2015. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors. Sensors 15, 1 (2015), 1365--1388.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. Lee, G. T. Gil, and Y. H. Lee. 2014. Exploiting spatial sparsity for estimating channels of hybrid MIMO systems in millimeter wave communications. In Proceedings of IEEE GLOBECOM.Google ScholarGoogle Scholar
  29. X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, and P. Steenkiste. 2009. DIRC: increasing indoor wireless capacity using directional antennas. In Proceedings of ACM SIGCOMM.Google ScholarGoogle Scholar
  30. X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, and P. Steenkiste. 2010. Pushing the envelope of indoor wireless spatial reuse using directional access points and clients. In Proceedings of ACM MOBICOM.Google ScholarGoogle Scholar
  31. Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018. Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270 (2018).Google ScholarGoogle Scholar
  32. Long Mai, Yuzhen Niu, and Feng Liu. 2013. Saliency aggregation: A data-driven approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1131--1138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. Mendez-Rial, C. Rusu, A. Alkhateeb, N. Gozalez-Prelcic, and R. W. Heath. 2015. Hybrid MIMO architectures for millimeter wave communications: phase shifters or switches?. In IEEE Access.Google ScholarGoogle Scholar
  34. Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Mérouane Debbah. 2019. Communications and Control for Wireless Drone-Based Antenna Array. IEEE Transactions on Communications 67, 1 (2019), 820--834. https://doi.org/10.1109/TCOMM.2018.2871453Google ScholarGoogle ScholarCross RefCross Ref
  35. A. Nguyen, J. Yosinski, and J. Clune. 2014. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. CoRR abs/1412.1897 (2014). arXiv:1412.1897Google ScholarGoogle Scholar
  36. David Opitz and Richard Maclin. 1999. Popular ensemble methods: An empirical study. Journal of artificial intelligence research 11 (1999), 169--198.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Palacios, D. D. Donno, and J. Widmer. 2017. Tracking mmWave channel dynamics: fast beam training strategies under mobility. In Proceedings of IEEE INFOCOM.Google ScholarGoogle Scholar
  38. S. Payami, M. Shariat, M. Ghoraishi, and M. Dianati. 2015. Effective RF codebook design and channel estimation for millimeter wave communication systems. In Proceedings of IEEE ICC.Google ScholarGoogle Scholar
  39. Alberto Reyna, Jesus Garza, Omar Elizarraras, M. Panduro, Luz I. Balderas, and María de la Luz Prado. 2021. 3D random virtual antenna arrays for FANETs wireless links. Telecommunication Systems (2021), 1--9.Google ScholarGoogle Scholar
  40. Ramanujan K. Sheshadri, Eugene Chai, Karthikeyan Sundaresan, and Sampath Rangarajan. 2020. SkyHaul: An Autonomous Gigabit Network Fabric in the Sky. CoRR abs/2006.11307 (2020). arXiv:2006.11307 https://arxiv.org/abs/2006.11307Google ScholarGoogle Scholar
  41. N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield. 2017. Toward Low-Flying Autonomous MAV Trail Navigation using Deep Neural Networks for Environmental Awareness. CoRRabs/1705.02550(2017). arXiv:1705.02550Google ScholarGoogle Scholar
  42. A. Teichman and S. Thrun. 2011. Practical object recognition in autonomous driving and beyond. In Advanced Robotics and its Social Impacts. 35--38.Google ScholarGoogle Scholar
  43. E. Teng, J. D. Falcao, and B. Iannucci. 2017. Holes-in-the-sky: a field study on cellular-connected UAS. In Proceedings of IEEE International Conference on Unmanned Aircraft Systems (ICUAS).Google ScholarGoogle Scholar
  44. H. Tran, S. Pandey, and N. Bulusu. 2017. Poster: Online Map Matching for PassiveIndoorPositioningSystems.InProceedingsofthe15thAnnualInternational Conference on Mobile Systems, Applications, and Services (Niagara Falls, New York, USA) (MobiSys '17). ACM, New York, NY, USA, 175--175.Google ScholarGoogle Scholar
  45. J. Wang, C. Jiang, Z. Han, Y. Ren, R. Maunder, and L. Hanzo. 2017. Taking Drones to the Next Level: Cooperative Distributed Unmanned-Aerial-Vehicular Networks for Small and Mini Drones. IEEE Vehicular Technology Magazine 12 (07 2017), 73--82.Google ScholarGoogle Scholar
  46. J. Wang, Z. Lan, C. Pyo, T. Baykas, C. S. Sum, M. A. Rahman, J. Gao, R. Funada, F. Kojima, H. Harada, and S. Kato. 2009. Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. In IEEE Journal on Selected Areas in Communications.Google ScholarGoogle Scholar
  47. C. Zhang, D. Guo, and P. Fan. 2016. Mobile millimeter wave channel acquisition, tracking, and abrupt change detection. In arXiv:1610.09626.Google ScholarGoogle Scholar
  48. Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6848--6856.Google ScholarGoogle ScholarCross RefCross Ref
  49. D. Zhu, J. Choi, and R. W. Heath. 2017. Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO system. In IEEE Transactions on Wireless Communications.Google ScholarGoogle Scholar
  50. Y. Zhu, S.J. Gortler, and D. Thurston. 2011. Sensor Network Localization Using Sensor Perturbation. ACM Transactions on Sensor Networks 7, 4, Article 36 (Feb. 2011), 23 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Towards Adaptive, Self-Configuring Networked Unmanned Aerial Vehicles

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          Dronet'21: Proceedings of the 7th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications
          June 2021
          40 pages
          ISBN:9781450385992
          DOI:10.1145/3469259

          Copyright © 2021 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 July 2021

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate 21 of 42 submissions, 50%
        • Article Metrics

          • Downloads (Last 12 months)114
          • Downloads (Last 6 weeks)10

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!