ABSTRACT
Networked drones have the potential to transform various applications domains; yet their adoption particularly in indoor and forest environments has been stymied by the lack of accurate maps and autonomous navigation abilities in the absence of GPS, the lack of highly reliable, energy-efficient wireless communications, and the challenges of visually inferring and understanding an environment with resource-limited individual drones. We advocate a novel vision for the research community in the development of distributed, localized algorithms that enable the networked drones to dynamically coordinate to perform adaptive beam forming to achieve high capacity directional aerial communications, and collaborative machine learning to simultaneously localize, map and visually infer the challenging environment, even when individual drones are resource-limited in terms of computation and communication due to payload restrictions.
- F. Adib, Z. Kabelac, and D. Katabi. 2015. Multi-Person Localization via RF Body Reflections. In 12th USENIX Symposium on Networked Systems Design and Implementation. 279--292.Google Scholar
- D. Aiger, B. Allen, and A. Golovinskiy. 2017. Large-Scale 3D Scene Classification With Multi-View Volumetric CNN. ArXiv e-prints (Dec. 2017). arXiv:1712.09216 [cs.CV]Google Scholar
- AirMap. 2021. (2021). http://www.airmap.com.Google Scholar
- A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath. 2014. Channel estimation and hybrid precoding for millimeter wave cellular systems. In IEEE Journal of Selected Topics in Signal Processing.Google Scholar
- A. Alkhateeb, G. Leusz, and R. W. Heath. 2015. Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?. In Proceedings of IEEE ICASSP.Google Scholar
- E. Aryafar and A. K. Haddad. 2015. FD2: a directional full duplex communication system for indoor wireless networks. In Proceedings of IEEE INFOCOM.Google Scholar
- E. Aryafar, J. Zhu, S. Singh, M. Akdeniz, W. Lee, and N. Himayat. 2016. Method for LoS-nLoS State Identification in mmWave Sector Sweep. In Submitted to United State Patent Office (USPTO), filing number PCT/US2016/066565.Google Scholar
- J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur. 2006. A Theory of Network Localization. IEEE Transactions on Mobile Computing 5, 12 (Dec 2006), 1663--1678.Google Scholar
Digital Library
- J. Bae, S. H. Lim, J. H. Yoo, and J. W. Choi. 2017. New beam tracking technique for millimeter wave-band communications. In arXiv:1702.00276.Google Scholar
- G. Balamurugan, J. Valarmathi, and V. P. S. Naidu. 2016. Survey on UAV navigation in GPS denied environments. In 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). 198--204.Google Scholar
Cross Ref
- L. Bottou, F. E. Curtis, and J. Nocedal. 2016. Optimization Methods for Large-Scale Machine Learning. ArXiv e-prints (June 2016). arXiv:1606.04838 [stat.ML]Google Scholar
- P. R. Chandler, M. Pachter, and S. Rasmussen. 2001. UAV cooperative control. In Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), Vol. 1. 50--55 vol.1.Google Scholar
- Quan Chen, Hai Zhu, Lei Yang, Xiaoqian Chen, Sofie Pollin, and Evgenii Vinogradov. 2021. Edge Computing Assisted Autonomous Flight for UAV: Synergies between Vision and Communications. IEEE Communications Magazine 59, 1 (2021), 28--33. https://doi.org/10.1109/MCOM.001.2000501Google Scholar
Digital Library
- Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016).Google Scholar
- Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture Search: A Survey. Journal of Machine Learning Research 20, 55 (2019), 1--21.Google Scholar
- J. Engel, V. Koltun, and D. Cremers. 2016. Direct Sparse Odometry. CoRR abs/1607.02565 (2016). arXiv:1607.02565Google Scholar
- A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson, and L. Tapia. 2017. PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning. ArXiv e-prints (Oct. 2017). arXiv:1710.03937 [cs.AI]Google Scholar
- B. Gao, Z. Xiao, L. Su, Z. Chen, D. Jin, and L. Zeng. 2015. Multi-device multi-path beamforming training for 60-GHz millimeter-wave communications. In Proceedings of IEEE ICC.Google Scholar
- X. Gao, L. Dai, Y. Zhang, T. Xie, X. Dai, and Z. Wang. 2017. Fast channel tracking for terahertz beamspace massive MIMO systems. In IEEE Transactions on Vehicular Technology.Google Scholar
- N. Garcia, H. Wymeersch, and D. Slock. 2017. Optimal robust precoders for tracking the AoD and AoA of a mm-Wave path. In arXiv:1703.10978.Google Scholar
- Jesus Garza, M. Panduro, Alberto Reyna, G. Romero, and C. Rio. 2016. Design of UAVs-Based 3D Antenna Arrays for a Maximum Performance in Terms of Directivity and SLL. International Journal of Antennas and Propagation 2016 (2016), 1--8.Google Scholar
Cross Ref
- Samira Hayat, Roland Jung, Hermann Hellwagner, Christian Bettstetter, Driton Emini, and Dominik Schnieders. 2021. Edge Computing in 5G for Drone Navigation: What to Offload? IEEE Robotics and Automation Letters 6, 2 (2021), 2571--2578. https://doi.org/10.1109/LRA.2021.3062319Google Scholar
- G. Hemann, S. Singh, and M. Kaess. 2016. Long-range GPS-denied aerial inertial navigation with LIDAR localization. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1659--1666.Google Scholar
- A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al. 2019. Searching for mobilenetv3. arXiv preprint arXiv:1905.02244 (2019).Google Scholar
- S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh. 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. In IEEE Transactions on Communications.Google Scholar
- IEEE 802.11 WG. 2012. IEEE 802.11ad, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. (2012).Google Scholar
- J.L.Fargeas, P. Kabamba, and A. Girard. 2015. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors. Sensors 15, 1 (2015), 1365--1388.Google Scholar
Cross Ref
- J. Lee, G. T. Gil, and Y. H. Lee. 2014. Exploiting spatial sparsity for estimating channels of hybrid MIMO systems in millimeter wave communications. In Proceedings of IEEE GLOBECOM.Google Scholar
- X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, and P. Steenkiste. 2009. DIRC: increasing indoor wireless capacity using directional antennas. In Proceedings of ACM SIGCOMM.Google Scholar
- X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, and P. Steenkiste. 2010. Pushing the envelope of indoor wireless spatial reuse using directional access points and clients. In Proceedings of ACM MOBICOM.Google Scholar
- Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018. Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270 (2018).Google Scholar
- Long Mai, Yuzhen Niu, and Feng Liu. 2013. Saliency aggregation: A data-driven approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1131--1138.Google Scholar
Digital Library
- R. Mendez-Rial, C. Rusu, A. Alkhateeb, N. Gozalez-Prelcic, and R. W. Heath. 2015. Hybrid MIMO architectures for millimeter wave communications: phase shifters or switches?. In IEEE Access.Google Scholar
- Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Mérouane Debbah. 2019. Communications and Control for Wireless Drone-Based Antenna Array. IEEE Transactions on Communications 67, 1 (2019), 820--834. https://doi.org/10.1109/TCOMM.2018.2871453Google Scholar
Cross Ref
- A. Nguyen, J. Yosinski, and J. Clune. 2014. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. CoRR abs/1412.1897 (2014). arXiv:1412.1897Google Scholar
- David Opitz and Richard Maclin. 1999. Popular ensemble methods: An empirical study. Journal of artificial intelligence research 11 (1999), 169--198.Google Scholar
Digital Library
- J. Palacios, D. D. Donno, and J. Widmer. 2017. Tracking mmWave channel dynamics: fast beam training strategies under mobility. In Proceedings of IEEE INFOCOM.Google Scholar
- S. Payami, M. Shariat, M. Ghoraishi, and M. Dianati. 2015. Effective RF codebook design and channel estimation for millimeter wave communication systems. In Proceedings of IEEE ICC.Google Scholar
- Alberto Reyna, Jesus Garza, Omar Elizarraras, M. Panduro, Luz I. Balderas, and María de la Luz Prado. 2021. 3D random virtual antenna arrays for FANETs wireless links. Telecommunication Systems (2021), 1--9.Google Scholar
- Ramanujan K. Sheshadri, Eugene Chai, Karthikeyan Sundaresan, and Sampath Rangarajan. 2020. SkyHaul: An Autonomous Gigabit Network Fabric in the Sky. CoRR abs/2006.11307 (2020). arXiv:2006.11307 https://arxiv.org/abs/2006.11307Google Scholar
- N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield. 2017. Toward Low-Flying Autonomous MAV Trail Navigation using Deep Neural Networks for Environmental Awareness. CoRRabs/1705.02550(2017). arXiv:1705.02550Google Scholar
- A. Teichman and S. Thrun. 2011. Practical object recognition in autonomous driving and beyond. In Advanced Robotics and its Social Impacts. 35--38.Google Scholar
- E. Teng, J. D. Falcao, and B. Iannucci. 2017. Holes-in-the-sky: a field study on cellular-connected UAS. In Proceedings of IEEE International Conference on Unmanned Aircraft Systems (ICUAS).Google Scholar
- H. Tran, S. Pandey, and N. Bulusu. 2017. Poster: Online Map Matching for PassiveIndoorPositioningSystems.InProceedingsofthe15thAnnualInternational Conference on Mobile Systems, Applications, and Services (Niagara Falls, New York, USA) (MobiSys '17). ACM, New York, NY, USA, 175--175.Google Scholar
- J. Wang, C. Jiang, Z. Han, Y. Ren, R. Maunder, and L. Hanzo. 2017. Taking Drones to the Next Level: Cooperative Distributed Unmanned-Aerial-Vehicular Networks for Small and Mini Drones. IEEE Vehicular Technology Magazine 12 (07 2017), 73--82.Google Scholar
- J. Wang, Z. Lan, C. Pyo, T. Baykas, C. S. Sum, M. A. Rahman, J. Gao, R. Funada, F. Kojima, H. Harada, and S. Kato. 2009. Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. In IEEE Journal on Selected Areas in Communications.Google Scholar
- C. Zhang, D. Guo, and P. Fan. 2016. Mobile millimeter wave channel acquisition, tracking, and abrupt change detection. In arXiv:1610.09626.Google Scholar
- Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6848--6856.Google Scholar
Cross Ref
- D. Zhu, J. Choi, and R. W. Heath. 2017. Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO system. In IEEE Transactions on Wireless Communications.Google Scholar
- Y. Zhu, S.J. Gortler, and D. Thurston. 2011. Sensor Network Localization Using Sensor Perturbation. ACM Transactions on Sensor Networks 7, 4, Article 36 (Feb. 2011), 23 pages.Google Scholar
Digital Library
Index Terms
Towards Adaptive, Self-Configuring Networked Unmanned Aerial Vehicles





Comments