skip to main content
research-article
Open Access

Cultivating the Community: Inferring Influence within Eating Disorder Networks on Twitter

Published:14 January 2022Publication History
Skip Abstract Section

Abstract

A growing body of HCI research has sought to understand how online networks are utilized in the adoption and maintenance of disordered activities and behaviors associated with mental illness, including eating habits. However, individual-level influences over discrete online eating disorder (ED) communities are not yet well understood. This study reports results from a comprehensive network and content analysis (combining computational topic modeling and qualitative thematic analysis) of over 32,000 public tweets collected using popular ED-related hashtags during May 2020. Our findings indicate that this ED network in Twitter consists of multiple smaller ED communities where a majority of the nodes are exposed to unhealthy ED contents through retweeting certain influential central nodes. The emergence of novel linguistic indicators and trends (e.g., "#meanspo") also demonstrates the evolving nature of the ED network. This paper contextualizes ED influence in online communities through node-level participation and engagement, as well as relates emerging ED contents with established online behaviors, such as self-harassment.

References

  1. Youcef Abdelsadek, Kamel Chelghoum, Francine Herrmann, Imed Kacem, and Beno^it Otjacques. 2018. Community extraction and visualization in social networks applied to Twitter. Information Sciences , Vol. 424 (2018), 204--223.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Liu H.-Tang L. & Philip S. Y. Agarwal, N. 2012. Modeling blogger influence in a community. Social Network Analysis and Mining , Vol. 2, 2 (2012), 139--162. https://doi.org/10.1007/s13278-011-0039--3Google ScholarGoogle ScholarCross RefCross Ref
  3. Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, and Hawoong Jeong. 2007. Analysis of topological characteristics of huge online social networking services. In Proceedings of the 16th international conference on World Wide Web . 835--844.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Amaal Alruwaily, Chelsea Mangold, Tenay Greene, Josh Arshonsky, Omni Cassidy, Jennifer L Pomeranz, and Marie Bragg. 2020. Child social media influencers and unhealthy food product placement. Pediatrics , Vol. 146, 5 (2020).Google ScholarGoogle Scholar
  5. Monica Anderson and JingJing Jiang. 2018, May 31. Teens, Social Media & Technology 2018. https://www.pewresearch.org/internet/2018/05/31/teens-social-media-technology-2018/Google ScholarGoogle Scholar
  6. Jon Arcelus, Alex J Mitchell, Jackie Wales, and Søren Nielsen. 2011. Mortality rates in patients with anorexia nervosa and other eating disorders: a meta-analysis of 36 studies. Archives of general psychiatry , Vol. 68, 7 (2011), 724--731.Google ScholarGoogle ScholarCross RefCross Ref
  7. Alina Arseniev-Koehler, Hedwig Lee, Tyler McCormick, and Megan A Moreno. 2016. #Proana: Pro-eating disorder socialization on Twitter. Journal of Adolescent Health , Vol. 58, 6 (2016), 659--664. https://doi.org/10.1016/j.jadohealth.2016.02.012Google ScholarGoogle ScholarCross RefCross Ref
  8. Brook Auxier and Monica Anderson. 2021, April 07. Social Media Use in 2021. https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/Google ScholarGoogle Scholar
  9. Eytan Bakshy, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts. 2011. Everyone's an Influencer: Quantifying Influence on Twitter. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (Hong Kong, China) (WSDM '11). Association for Computing Machinery, New York, NY, USA, 65?-ì74. https://doi.org/10.1145/1935826.1935845Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Anna M Bardone-Cone and Kamila M Cass. 2007. What does viewing a pro-anorexia website do? An experimental examination of website exposure and moderating effects. International Journal of Eating Disorders , Vol. 40, 6 (2007), 537--548.Google ScholarGoogle ScholarCross RefCross Ref
  11. Michele Benzi and Christine Klymko. 2014. A matrix analysis of different centrality measures. arXiv preprint arXiv:1312.6722 (2014).Google ScholarGoogle Scholar
  12. Lobban F.-Belousov M. Emsley R. Nenadic G. & Bucci S. Berry, N. 2017. #WhyWeTweetMH: understanding why people use Twitter to discuss mental health problems. Journal of medical Internet research , Vol. 19, 4 (2017), e107. https://doi.org/10.2196/jmir.6173Google ScholarGoogle ScholarCross RefCross Ref
  13. Lindsay Blackwell, Jill Dimond, Sarita Schoenebeck, and Cliff Lampe. 2017. Classification and Its Consequences for Online Harassment: Design Insights from HeartMob. Proc. ACM Hum.-Comput. Interact. , Vol. 1, CSCW, Article 24 (Dec. 2017), bibinfonumpages19 pages. https://doi.org/10.1145/3134659Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment , Vol. 2008, 10 (2008), P10008.Google ScholarGoogle ScholarCross RefCross Ref
  15. & Pascoe-C. J. Boero, N. 2012. Pro-anorexia communities and online interaction: Bringing the pro-ana body online. Body & Society , Vol. 18, 2 (2012), 27--57. https://doi.org/10.1177/1357034X12440827Google ScholarGoogle ScholarCross RefCross Ref
  16. Schenk-S. Wilson J. L. & Peebles R. Borzekowski, D. L. 2010. e-Ana and e-Mia: A content analysis of pro?-ìeating disorder web sites. American journal of public healt , Vol. 100, 8 (2010), 1526--1534. https://doi.org/10.2105/AJPH.2009.172700Google ScholarGoogle Scholar
  17. Sarah R. Brotsky and David Giles. 2007. Inside the Community: A Covert Online Participant Observation. Eating Disorders , Vol. 15, 2 (2007), 93--109. https://doi.org/10.1080/10640260701190600Google ScholarGoogle ScholarCross RefCross Ref
  18. Palmer S.-Togher L. & Hemsley B. Brunner, M. 2019. ?-òI kind of figured it out?-ô: the views and experiences of people with traumatic brain injury (TBI) in using social media?-îself?-êdetermination for participation and inclusion online. International journal of language & communication disorders , Vol. 54, 2 (2019), 221--233. https://doi.org/10.1111/1460--6984.12405Google ScholarGoogle Scholar
  19. Kwitowski-M. A. & Mazzeo S. E. Burnette, C. B. 2017. ; A qualitative study of social media and body image in early adolescent girls. Body Image , Vol. 23 (2017), 114--125. https://doi.org/10.1016/j.bodyim.2017.09.001Google ScholarGoogle ScholarCross RefCross Ref
  20. Gabriella Casalino, Ciro Castiello, Nicoletta Del Buono, and Corrado Mencar. 2018. A framework for intelligent Twitter data analysis with non-negative matrix factorization. International Journal of Web Information Systems (2018).Google ScholarGoogle Scholar
  21. Damon Centola. 2010. The spread of behavior in an online social network experiment. science , Vol. 329, 5996 (2010), 1194--1197.Google ScholarGoogle Scholar
  22. Damon Centola. 2011. An experimental study of homophily in the adoption of health behavior. Science , Vol. 334, 6060 (2011), 1269--1272.Google ScholarGoogle ScholarCross RefCross Ref
  23. Stevie Chancellor, Yannis Kalantidis, Jessica A. Pater, Munmun De Choudhury, and David A. Shamma. 2017. Multimodal Classification of Moderated Online Pro-Eating Disorder Content. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI '17). Association for Computing Machinery, New York, NY, USA, 3213?-ì3226. https://doi.org/10.1145/3025453.3025985Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Stevie Chancellor, Zhiyuan Lin, Erica L. Goodman, Stephanie Zerwas, and Munmun De Choudhury. 2016b. Quantifying and Predicting Mental Illness Severity in Online Pro-Eating Disorder Communities. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (San Francisco, California, USA) (CSCW '16). Association for Computing Machinery, New York, NY, USA, 1171?-ì1184. https://doi.org/10.1145/2818048.2819973Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Stevie Chancellor, Zhiyuan (Jerry) Lin, and Munmun De Choudhury. 2016a. "This Post Will Just Get Taken Down": Characterizing Removed Pro-Eating Disorder Social Media Content. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI '16). Association for Computing Machinery, New York, NY, USA, 1157?-ì1162. https://doi.org/10.1145/2858036.2858248Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stevie Chancellor, Jessica Annette Pater, Trustin Clear, Eric Gilbert, and Munmun De Choudhury. 2016c. #thyghgapp: Instagram Content Moderation and Lexical Variation in Pro-Eating Disorder Communities. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (San Francisco, California, USA) (CSCW '16). Association for Computing Machinery, New York, NY, USA, 1201?-ì1213. https://doi.org/10.1145/2818048.2819963Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Chiu-C. H. Miao N. F. Chen P. H. Lee C. M. & Chiang J. T. Chang, F. C. 2016. Predictors of unwanted exposure to online pornography and online sexual solicitation of youth. Journal of health psychology , Vol. 21, 6 (2016), 1107--1118. https://doi.org/10.1177/1359105314546775Google ScholarGoogle ScholarCross RefCross Ref
  28. Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David M Blei. 2009. Reading tea leaves: How humans interpret topic models. In Neural information processing systems, Vol. 22. Citeseer, 288--296.Google ScholarGoogle Scholar
  29. & Xu-J. Chau, M. 2007. Mining communities and their relationships in blogs: A study of online hate groups. International Journal of Human-Computer Studies , Vol. 65, 1 (2007), 57--70. https://doi.org/10.1016/j.ijhcs.2006.08.009Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jilin Chen, Werner Geyer, Casey Dugan, Michael Muller, and Ido Guy. 2009. Make New Friends, but Keep the Old: Recommending People on Social Networking Sites. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI '09). Association for Computing Machinery, New York, NY, USA, 201?-ì210. https://doi.org/10.1145/1518701.1518735Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Christy MK Cheung, Randy Yee Man Wong, and Tommy KH Chan. 2020. Online disinhibition: conceptualization, measurement, and implications for online deviant behavior. Industrial Management & Data Systems (2020).Google ScholarGoogle Scholar
  32. Alvin Chin, Jennifer Keelan, George Tomlinson, Vera Pavri-Garcia, Kumanan Wilson, and Mark Chignell. 2010. Automated delineation of subgroups in web video: A medical activism case study. Journal of Computer-Mediated Communication , Vol. 15, 3 (2010), 447--464.Google ScholarGoogle ScholarCross RefCross Ref
  33. Nathan K Cobb, Amanda L Graham, and David B Abrams. 2010. Social network structure of a large online community for smoking cessation. American journal of public health , Vol. 100, 7 (2010), 1282--1289.Google ScholarGoogle Scholar
  34. Marios Constantinides, Jonas Busk, Aleksandar Matic, Maria Faurholt-Jepsen, Lars Vedel Kessing, and Jakob E. Bardram. 2018. Personalized versus Generic Mood Prediction Models in Bipolar Disorder. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (Singapore, Singapore) (UbiComp '18). Association for Computing Machinery, New York, NY, USA, 1700?-ì1707. https://doi.org/10.1145/3267305.3267536Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. & Seigfried-Spellar K. C. Crimmins, D. M. 2014. Peer attachment, sexual experiences, and risky online behaviors as predictors of sexting behaviors among undergraduate students. Computers in Human Behavior , Vol. 32 (2014), 268--275. https://doi.org/10.1016/j.chb.2013.12.012Google ScholarGoogle ScholarCross RefCross Ref
  36. Christophe Croux and Catherine Dehon. 2010. Influence functions of the Spearman and Kendall correlation measures. Statistical methods & applications , Vol. 19, 4 (2010), 497--515.Google ScholarGoogle Scholar
  37. Maral Dadvar and Franciska De Jong. 2012. Cyberbullying detection: a step toward a safer internet yard. In Proceedings of the 21st International Conference on World Wide Web. 121--126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Gamon M.-Counts S. & Horvitz E. De Choudhury, M. 2013. Predicting depression via social media. Proceedings of the International AAAI Conference on Web and Social Media , Vol. 7, 1 (2013).Google ScholarGoogle Scholar
  39. Munmun De Choudhury, Scott Counts, and Eric Horvitz. 2013. Predicting postpartum changes in emotion and behavior via social media. In Proceedings of the SIGCHI conference on human factors in computing systems . 3267--3276.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Munmun De Choudhury, Sanket S. Sharma, Tomaz Logar, Wouter Eekhout, and René Clausen Nielsen. 2017. Gender and Cross-Cultural Differences in Social Media Disclosures of Mental Illness. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (Portland, Oregon, USA) (CSCW '17). Association for Computing Machinery, New York, NY, USA, 353?-ì369. https://doi.org/10.1145/2998181.2998220Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Munmun De Choudhury, Hari Sundaram, Ajita John, Doree Duncan Seligmann, and Aisling Kelliher. 2010. " Birds of a Feather": Does User Homophily Impact Information Diffusion in Social Media? arXiv preprint arXiv:1006.1702 (2010).Google ScholarGoogle Scholar
  42. Peter-J. de Graaf H. & Nikken P. de Vries, D. A. 2016. Adolescents?-ô social network site use, peer appearance-related feedback, and body dissatisfaction: Testing a mediation model. Journal of youth and adolescence , Vol. 45, 1 (2016), 211--224. https://doi.org/10.1007/s10964-015-0266--4Google ScholarGoogle ScholarCross RefCross Ref
  43. Ljiljana Despalatović , Tanja Vojković, and Damir VukicÃÜević. 2014. Community structure in networks: Girvan-Newman algorithm improvement. In 2014 37th international convention on information and communication technology, electronics and microelectronics (MIPRO). IEEE, 997--1002.Google ScholarGoogle Scholar
  44. Lavelle M.-Pickles K. Kalorkoti C. Jaques J. Pappa S. & Aylin P. Dewa, L. H. 2019. Young adults?-ô perceptions of using wearables, social media and other technologies to detect worsening mental health: A qualitative study. PloS one , Vol. 14, 9 (2019), e0222655. https://doi.org/10.1371/journal.pone.0222655Google ScholarGoogle ScholarCross RefCross Ref
  45. Andrew Disney. 2020. Social network analysis: Centrality measures. https://cambridge-intelligence.com/keylines-faqs-social-network-analysis/Google ScholarGoogle Scholar
  46. Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Grbovic, Vladan Radosavljevic, and Narayan Bhamidipati. 2015. Hate speech detection with comment embeddings. In Proceedings of the 24th international conference on world wide web. 29--30.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Gavin Doherty, David Coyle, and John Sharry. 2012. Engagement with Online Mental Health Interventions: An Exploratory Clinical Study of a Treatment for Depression. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA) (CHI '12). Association for Computing Machinery, New York, NY, USA, 1421-ì1430. https://doi.org/10.1145/2207676.2208602Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. D. M. Douglas. 2016. Doxing: a conceptual analysis. Ethics and information technology , Vol. 18, 3 (2016), 199--210. https://doi.org/10.1007/s10676-016--9406-0Google ScholarGoogle Scholar
  49. Deloitte Access Economics. 2020, June. The Social and Economic Cost of Eating Disorders in the United States of America: A Report for the Strategic Training Initiative for the Prevention of Eating Disorders and the Academy for Eating Disorders. (2020, June). https://www.hsph.harvard.edu/striped/report-economic-costs-of-eating-disorders/Google ScholarGoogle Scholar
  50. Elizabeth V. Eikey and Madhu C. Reddy. 2017. "It's Definitely Been a Journey": A Qualitative Study on How Women with Eating Disorders Use Weight Loss Apps. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI '17). Association for Computing Machinery, New York, NY, USA, 642-ì654. https://doi.org/10.1145/3025453.3025591Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Kristina Eriksson-Backa, Kim Holmberg, and Stefan Ek. 2016. Communicating diabetes and diets on Twitter-a semantic content analysis. International Journal of Networking and Virtual Organisations , Vol. 16, 1 (2016), 8--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Sindhu Kiranmai Ernala, Kathan H. Kashiparekh, Amir Bolous, Asra Ali, John M. Kane, Michael L. Birnbaum, and Munmun De Choudhury. 2021. A Social Media Study on Mental Health Status Transitions Surrounding Psychiatric Hospitalizations. Proc. ACM Hum.-Comput. Interact. , Vol. 5, CSCW1, Article 155 (April 2021), bibinfonumpages32 pages. https://doi.org/10.1145/3449229Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Sindhu Kiranmai Ernala, Asra F. Rizvi, Michael L. Birnbaum, John M. Kane, and Munmun De Choudhury. 2017. Linguistic Markers Indicating Therapeutic Outcomes of Social Media Disclosures of Schizophrenia. Proc. ACM Hum.-Comput. Interact. , Vol. 1, CSCW, Article 43 (Dec. 2017), bibinfonumpages27 pages. https://doi.org/10.1145/3134678Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yousra Fettach and Lamia Benhiba. 2019. Pro-Eating Disorders and Pro-Recovery Communities on Reddit: Text and Network Comparative Analyses. In Proceedings of the 21st International Conference on Information Integration and Web-based Application & Services (iiWAS2019). ACM, New York, NY, USA, 277--286. https://doi.org/10.1145/3366030.3366058Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Jessica L. Feuston and Anne Marie Piper. 2018. Beyond the Coded Gaze: Analyzing Expression of Mental Health and Illness on Instagram. Proc. ACM Hum.-Comput. Interact. , Vol. 2, CSCW, Article 51 (Nov. 2018), bibinfonumpages21 pages. https://doi.org/10.1145/3274320Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Jannath Ghaznavi and Laramie D. Taylor. 2015. Bones, body parts, and sex appeal: An analysis of# thinspiration images on popular social media. Body Image , Vol. 14 (2015), 54--61. https://doi.org/10.1016/j.bodyim.2015.03.006Google ScholarGoogle ScholarCross RefCross Ref
  57. Paul Gilbert and Chris Irons. 2005. Focused therapies and compassionate mind training for shame and self-attacking. (2005).Google ScholarGoogle Scholar
  58. Erving Goffman. 1978. The presentation of self in everyday life .Harmondsworth, London.Google ScholarGoogle Scholar
  59. Cannon B.-Burton S. & Giraud-Carrier C. Hanson, C. L. 2013. An exploration of social circles and prescription drug abuse through Twitter. Journal of medical Internet research , Vol. 15, 9 (2013), e189. https://doi.org/10.2196/jmir.2741Google ScholarGoogle ScholarCross RefCross Ref
  60. Kelley Harper, Steffanie Sperry, and J Kevin Thompson. 2008. Viewership of pro-eating disorder websites: Association with body image and eating disturbances. International Journal of Eating Disorders , Vol. 41, 1 (2008), 92--95.Google ScholarGoogle ScholarCross RefCross Ref
  61. Jenine K Harris, Alexis Duncan, Vera Men, Nora Shevick, Melissa J Krauss, and Patricia A Cavazos-Rehg. 2018. Peer reviewed: Messengers and messages for tweets that used# thinspo and# fitspo hashtags in 2016. Preventing chronic disease , Vol. 15 (2018).Google ScholarGoogle Scholar
  62. Ellison N. B. & Gibbs J. L. Heino, R. D. 2010. Relationshopping: Investigating the market metaphor in online dating. Journal of Social and Personal relationships , Vol. 27, 4 (2010), 427--447. https://doi.org/10.1177/0265407510361614Google ScholarGoogle ScholarCross RefCross Ref
  63. & Chou C. Huang, Y. Y. 2010. An analysis of multiple factors of cyberbullying among junior high school students in Taiwan. Computers in Human Behavior , Vol. 26, 6 (2010), 1581--1590. https://doi.org/10.1016/j.chb.2010.06.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. & Smith A. R Hummel, A. C. 2015. Ask and you shall receive: Desire and receipt of feedback via Facebook predicts disordered eating concerns. International Journal of Eating Disorders , Vol. 48, 4 (2015), 436--442. https://doi.org/10.1002/eat.22336Google ScholarGoogle ScholarCross RefCross Ref
  65. Shagun Jhaver, Sucheta Ghoshal, Amy Bruckman, and Eric Gilbert. 2018. Online Harassment and Content Moderation: The Case of Blocklists. ACM Trans. Comput.-Hum. Interact. , Vol. 25, 2, Article 12 (March 2018), bibinfonumpages33 pages. https://doi.org/10.1145/3185593Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Shaohai Jiang. 2019. Functional interactivity in social media: an examination of Chinese health care organizations-ô microblog profiles. Health promotion international , Vol. 34, 1 (2019), 38--46.Google ScholarGoogle Scholar
  67. Karen Sparck Jones and Peter Willett. 1997. Readings in information retrieval .Morgan Kaufmann.Google ScholarGoogle Scholar
  68. Elihu Katz and Paul F Lazarsfeld. 2017. Personal influence: The part played by people in the flow of mass communications .Routledge.Google ScholarGoogle Scholar
  69. Yong-Hyuk Kim, Sehoon Seo, Yong-Ho Ha, Seongwon Lim, and Yourim Yoon. 2013. Two applications of clustering techniques to twitter: Community detection and issue extraction. Discrete dynamics in nature and society , Vol. 2013 (2013).Google ScholarGoogle Scholar
  70. Kara L Kimevski. 2017. Social Media and Its Connection to the Development of Eating Disorders . Ph.D. Dissertation. Kent State University.Google ScholarGoogle Scholar
  71. Kaylee Payne Kruzan, Janis Whitlock, Natalya N. Bazarova, Katherine D. Miller, Julia Chapman, and Andrea Stevenson Won. 2020. Supporting Self-Injury Recovery: The Potential for Virtual Reality Intervention. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI '20). Association for Computing Machinery, New York, NY, USA, 1-ì14. https://doi.org/10.1145/3313831.3376396Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Emily G. Lattie, Rachel Kornfield, Kathryn E. Ringland, Renwen Zhang, Nathan Winquist, and Madhu Reddy. 2020. Designing Mental Health Technologies That Support the Social Ecosystem of College Students. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI '20). Association for Computing Machinery, New York, NY, USA, 1-ì15. https://doi.org/10.1145/3313831.3376362Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Etienne Lave, Jean; Wenger. 1991. Situated Learning: Legitimate Peripheral Participation .Cambridge University Press.Google ScholarGoogle ScholarCross RefCross Ref
  74. Amanda Lenhart, Michele Ybarra, Kathryn Zickuhr, and Myeshia Price-Feeney. 2016. Online Harassment, Digital Abuse, and Cyberstalking in America . https://datasociety.net/output/online-harassment-digital-abuse-cyberstalking/Google ScholarGoogle Scholar
  75. Kristina Lerman and Rumi Ghosh. 2010. Information contagion: An empirical study of the spread of news on digg and twitter social networks. In Proceedings of the International AAAI Conference on Web and Social Media, Vol. 4.Google ScholarGoogle ScholarCross RefCross Ref
  76. Stephen P Lewis and Alexis E Arbuthnott. 2012. Searching for thinspiration: the nature of internet searches for pro-eating disorder websites. Cyberpsychology, Behavior, and Social Networking , Vol. 15, 4 (2012), 200--204.Google ScholarGoogle ScholarCross RefCross Ref
  77. Bussey K. Mond J. Brown O. Griffiths S. Murray S. B. & Mitchison D. Lonergan, A. R. 2019. Me, my selfie, and I: The relationship between editing and posting selfies and body dissatisfaction in men and women. Body Image , Vol. 28 (2019), 39--43. https://doi.org/10.1016/j.bodyim.2018.12.001Google ScholarGoogle ScholarCross RefCross Ref
  78. Paul Benjamin Lowry, Jun Zhang, Chuang Wang, and Mikko Siponen. 2016. Why do adults engage in cyberbullying on social media? An integration of online disinhibition and deindividuation effects with the social structure and social learning model. Information Systems Research , Vol. 27, 4 (2016), 962--986.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Douglas A Luke and Jenine K Harris. 2007. Network analysis in public health: history, methods, and applications. Annu. Rev. Public Health , Vol. 28 (2007), 69--93.Google ScholarGoogle ScholarCross RefCross Ref
  80. Theo Lynn, Pierangelo Rosati, Guto Leoni Santos, and Patricia Takako Endo. 2020. Sorting the Healthy Diet Signal from the Social Media Expert Noise: Preliminary Evidence from the Healthy Diet Discourse on Twitter. International Journal of Environmental Research and Public Health , Vol. 17, 22 (2020), 8557.Google ScholarGoogle ScholarCross RefCross Ref
  81. Alexandra Marin and Barry Wellman. 2011. Social network analysis: An introduction. The SAGE handbook of social network analysis , Vol. 11 (2011).Google ScholarGoogle Scholar
  82. & Boyd D. Marwick, A. E. 2014. Networked privacy: How teenagers negotiate context in social media. New media & society , Vol. 16, 7 (2014), 1051--1067. https://doi.org/10.1177/1461444814543995Google ScholarGoogle Scholar
  83. Bridget Christine McHugh, Pamela J. Wisniewski, Mary Beth Rosson, Heng Xu, and John M. Carroll. 2017. Most Teens Bounce Back: Using Diary Methods to Examine How Quickly Teens Recover from Episodic Online Risk Exposure. Proc. ACM Hum.-Comput. Interact. , Vol. 1, CSCW, Article 76 (Dec. 2017), bibinfonumpages19 pages. https://doi.org/10.1145/3134711Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Natarajan Meghanathan. 2015. Correlation coefficient analysis of centrality metrics for complex network graphs. In Computer Science On-line Conference. Springer, 11--20.Google ScholarGoogle ScholarCross RefCross Ref
  85. Darién Miranda, Marco Calderón, and Jesus Favela. 2014. Anxiety Detection Using Wearable Monitoring. In Proceedings of the 5th Mexican Conference on Human-Computer Interaction (Oaxaca, Mexico, Mexico) (MexIHC '14). Association for Computing Machinery, New York, NY, USA, 34?-ì41. https://doi.org/10.1145/2676690.2676694Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Feldhege J. Wolf M. & Bauer S. Moessner, M. 2018. Analyzing big data in social media: Text and network analyses of an eating disorder forum. International Journal of Eating Disorders , Vol. 51, 7 (2018), 656--667.Google ScholarGoogle ScholarCross RefCross Ref
  87. Seunghyeon Moon, Jae-Gil Lee, and Minseo Kang. 2014. Scalable community detection from networks by computing edge betweenness on mapreduce. In 2014 International Conference on Big Data and Smart Computing (BIGCOMP). IEEE, 145--148.Google ScholarGoogle ScholarCross RefCross Ref
  88. & Hepworth J. Mulveen, R. 2006. An interpretative phenomenological analysis of participation in a pro-anorexia internet site and its relationship with disordered eating. Journal of health psychology , Vol. 11, 2 (2006), 283--296. https://doi.org/10.1177/1359105306061187Google ScholarGoogle ScholarCross RefCross Ref
  89. Sahiti Myneni, Kayo Fujimoto, and Trevor Cohen. 2017. Leveraging social media for health promotion and behavior change: methods of analysis and opportunities for intervention. In Cognitive Informatics in Health and Biomedicine. Springer, 315--345.Google ScholarGoogle Scholar
  90. Alan Neves, Ramon Vieira, Fernando Mourao, and Leonardo Rocha. 2015. Quantifying complementarity among strategies for influencers?-ô detection on Twitter. Procedia Computer Science , Vol. 51 (2015), 2435--2444.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Alicia L Nobles, Caitlin N Dreisbach, Jessica Keim-Malpass, and Laura E Barnes. 2018a. " Is This an STD? Please Help!": Online Information Seeking for Sexually Transmitted Diseases on Reddit. In Twelfth International AAAI Conference on Web and Social Media .Google ScholarGoogle ScholarCross RefCross Ref
  92. Alicia L. Nobles, Jeffrey J. Glenn, Kamran Kowsari, Bethany A. Teachman, and Laura E. Barnes. 2018b. Identification of Imminent Suicide Risk Among Young Adults Using Text Messages. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI '18). Association for Computing Machinery, New York, NY, USA, 1-ì11. https://doi.org/10.1145/3173574.3173987Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Fayika Farhat Nova, Michael Ann DeVito, Pratyasha Saha, Kazi Shohanur Rashid, Shashwata Roy Turzo, Sadia Afrin, and Shion Guha. 2021. " Facebook Promotes More Harassment" Social Media Ecosystem, Skill and Marginalized Hijra Identity in Bangladesh. Proceedings of the ACM on Human-Computer Interaction , Vol. 5, CSCW1 (2021), 1--35.Google ScholarGoogle Scholar
  94. Fayika Farhat Nova, MD Rashidujjaman Rifat, Pratyasha Saha, Syed Ishtiaque Ahmed, and Shion Guha. 2019. Online sexual harassment over anonymous social media in Bangladesh. In Proceedings of the Tenth International Conference on Information and Communication Technologies and Development. 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. He D. Jeng W. Mattern E. & Bowler L. Oh, J. S. 2013. Linguistic characteristics of eating disorder questions on Yahoo! Answers-ìcontent, style, and emotion. Proceedings of the American Society for Information Science and Technology , Vol. 50, 1 (2013), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  96. Kathleen O'Leary, Arpita Bhattacharya, Sean A. Munson, Jacob O. Wobbrock, and Wanda Pratt. 2017. Design Opportunities for Mental Health Peer Support Technologies. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (Portland, Oregon, USA) (CSCW '17). Association for Computing Machinery, New York, NY, USA, 1470-ì1484. https://doi.org/10.1145/2998181.2998349Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Günce Keziban Orman, Vincent Labatut, and Hocine Cherifi. 2012. Comparative evaluation of community detection algorithms: a topological approach. Journal of Statistical Mechanics: Theory and Experiment , Vol. 2012, 08 (2012), P08001.Google ScholarGoogle ScholarCross RefCross Ref
  98. G. Overbeke. 2008. Pro-anorexia websites: Content, impact, and explanations of popularity. Mind Matters: The Wesleyan Journal of Psychology , Vol. 3, 1 (2008), 49--62.Google ScholarGoogle Scholar
  99. & Hinduja S. Patchin, J. W. 2017. Digital self-harm among adolescents. Journal of Adolescent Health , Vol. 61, 6 (2017), 761--766. https://doi.org/10.1016/j.jadohealth.2017.06.012Google ScholarGoogle ScholarCross RefCross Ref
  100. Jessica Pater and Elizabeth Mynatt. 2017. Defining Digital Self-Harm. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (Portland, Oregon, USA) (CSCW '17). Association for Computing Machinery, New York, NY, USA, 1501-ì1513. https://doi.org/10.1145/2998181.2998224Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Jessica Pater, Fayika Farhat Nova, Amanda Coupe, Lauren E. Reining, Connie Kerrigan, Tammy Toscos, and Elizabeth D Mynatt. 2021. Charting the Unknown: Challenges in the Clinical Assessment of Patients-ô Technology Use Related to Eating Disorders. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 548, bibinfonumpages14 pages. https://doi.org/10.1145/3411764.3445289Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Jessica A. Pater, Brooke Farrington, Alycia Brown, Lauren E. Reining, Tammy Toscos, and Elizabeth D. Mynatt. 2019 a. Exploring Indicators of Digital Self-Harm with Eating Disorder Patients: A Case Study. Proc. ACM Hum.-Comput. Interact. , Vol. 3, CSCW, Article 84 (Nov. 2019), bibinfonumpages26 pages. https://doi.org/10.1145/3359186Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Jessica A. Pater, Oliver L. Haimson, Nazanin Andalibi, and Elizabeth D. Mynatt. 2016a. "Hunger Hurts but Starving Works": Characterizing the Presentation of Eating Disorders Online. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (San Francisco, California, USA) (CSCW '16). ACM, New York, NY, USA, 1185--1200. https://doi.org/10.1145/2818048.2820030Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Jessica A. Pater, Moon K. Kim, Elizabeth D. Mynatt, and Casey Fiesler. 2016b. Characterizations of Online Harassment: Comparing Policies Across Social Media Platforms. In Proceedings of the 19th International Conference on Supporting Group Work (Sanibel Island, Florida, USA) (GROUP '16). Association for Computing Machinery, New York, NY, USA, 369-ì374. https://doi.org/10.1145/2957276.2957297Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Jessica A. Pater, Andrew D. Miller, and Elizabeth D. Mynatt. 2015. This Digital Life: A Neighborhood-Based Study of Adolescents' Lives Online. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI '15). Association for Computing Machinery, New York, NY, USA, 2305-ì2314. https://doi.org/10.1145/2702123.2702534Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Jessica A. Pater, Lauren E. Reining, Andrew D. Miller, Tammy Toscos, and Elizabeth D. Mynatt. 2019 b. "Notjustgirls": Exploring Male-Related Eating Disordered Content across Social Media Platforms. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI '19). Association for Computing Machinery, New York, NY, USA, 1-ì13. https://doi.org/10.1145/3290605.3300881Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Carlos A Pérez-Aldana, Allison A Lewinski, Constance M Johnson, Allison A Vorderstrasse, and Sahiti Myneni. 2021. Exchanges in a Virtual Environment for Diabetes Self-Management Education and Support: Social Network Analysis. JMIR diabetes , Vol. 6, 1 (2021), e21611.Google ScholarGoogle Scholar
  108. Lorenzoni V. Andreozzi G. Mosca M. & Turchetti G. Pirri, S. 2020. Topic Modeling and User Network Analysis on Twitter during World Lupus Awareness Day. International Journal of Environmental Research and Public Health , Vol. 17, 15 (2020), 5540. https://doi.org/10.3390/ijerph17155440Google ScholarGoogle ScholarCross RefCross Ref
  109. Ava Podrazhansky, Hao Zhang, Meng Han, and Selena He. 2020. A Chatbot-Based Mobile Application to Predict and Early-Prevent Human Mental Illness. In Proceedings of the 2020 ACM Southeast Conference (Tampa, FL, USA) (ACM SE '20). Association for Computing Machinery, New York, NY, USA, 311-ì312. https://doi.org/10.1145/3374135.3385319Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Kyle Porter. 2018. Analyzing the DarkNetMarkets subreddit for evolutions of tools and trends using LDA topic modeling. Digital Investigation , Vol. 26 (2018), S87--S97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A Gunnels. 2015. Scalable community detection with the louvain algorithm. In 2015 IEEE International Parallel and Distributed Processing Symposium. IEEE, 28--37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Sara Rahiminejad, Mano R Maurya, and Shankar Subramaniam. 2019. Topological and functional comparison of community detection algorithms in biological networks. BMC bioinformatics , Vol. 20, 1 (2019), 1--25.Google ScholarGoogle Scholar
  113. Abigail Karr Remick. 2010. The effects of impression-management motivation on eating behavior in women . Ph.D. Dissertation.Google ScholarGoogle Scholar
  114. Paul Resnick and Bob Kraut. 2011. Evidence-based social design: Mining social sciences to build online communities .MIT University Press.Google ScholarGoogle Scholar
  115. Sebastian A Rios, Felipe Aguilera, J David Nu nez-Gonzalez, and Manuel Gra na. 2019. Semantically enhanced network analysis for influencer identification in online social networks. Neurocomputing , Vol. 326 (2019), 71--81.Google ScholarGoogle ScholarCross RefCross Ref
  116. Elliott P. & Pattison P. Robins, G. 2001. Network models for social selection processes. Social networks , Vol. 23, 1 (2001), 1--30. https://doi.org/10.1016/S0378--8733(01)00029--6Google ScholarGoogle Scholar
  117. Schumacher L. M. Rosenbaum D. L. Kase C. A. Piers A. D. Lowe M. R. Forman E.M. Schaumberg, K. and M.L. Butryn. 2016. The role of negative reinforcement eating expectancies in the relation between experiential avoidance and disinhibition. Eating behaviors , Vol. 21 (2016), 129--134. https://doi.org/10.1016/j.eatbeh.2016.01.003Google ScholarGoogle Scholar
  118. Zwillich B. Bindl M. J. Hopp F. R. Reich S. & Vorderer P. Schneider, F. M. 2017. Social media ostracism: The effects of being excluded online. Computers in Human Behavior , Vol. 73, 2017 (2017), 385--393.Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Victoria Schwanda Sosik, Xuan Zhao, and Dan Cosley. 2012. See Friendship, Sort of: How Conversation and Digital Traces Might Support Reflection on Friendships. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work (Seattle, Washington, USA) (CSCW '12). Association for Computing Machinery, New York, NY, USA, 1145-ì1154. https://doi.org/10.1145/2145204.2145374Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Gayen A. Ganguly N. Dandapat S. K. & Chandra J. Sequeira, R. 2019. A Large-Scale Study of the Twitter Follower Network to Characterize the Spread of Prescription Drug Abuse Tweets. IEEE Transactions on Computational Social Systems , Vol. 6, 6 (2019), 1232--1244. https://doi.org/10.1109/TCSS.2019.2943238Google ScholarGoogle ScholarCross RefCross Ref
  121. Leslie Regan Shade. 2003. Weborexics: The ethical issues surrounding pro-ana websites. Acm Sigcas Computers and Society , Vol. 33, 4 (2003), 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Chiu C. M. & Chang C. C. Shiue, Y. C. 2010. Exploring and mitigating social loafing in online communities. Computers in Human Behavior , Vol. 26, 4 (2010), 768--777. https://doi.org/10.1016/j.chb.2010.01.014Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Will Simm, Maria Angela Ferrario, Adrian Gradinar, Marcia Tavares Smith, Stephen Forshaw, Ian Smith, and Jon Whittle. 2016. Anxiety and Autism: Towards Personalized Digital Health. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI '16). Association for Computing Machinery, New York, NY, USA, 1270-ì1281. https://doi.org/10.1145/2858036.2858259Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Smith P. K. & Fris©n A. Slonje, R. 2013. The nature of cyberbullying, and strategies for prevention. Computers in human behavior , Vol. 29, 1 (2013), 26--32. https://doi.org/10.1016/j.chb.2012.05.024Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Szongott C. Henne B. & Von Voigt G. Smith, M. 2012. Big data privacy issues in public social media. In Proceedings of the 6th IEEE international conference on digital ecosystems and technologies (DEST '12). IEEE, New York, NY, USA, 1--6. https://doi.org/10.1109/DEST.2012.6227909Google ScholarGoogle Scholar
  126. Peter Snyder, Periwinkle Doerfler, Chris Kanich, and Damon McCoy. 2017. Fifteen Minutes of Unwanted Fame: Detecting and Characterizing Doxing. In Proceedings of the 2017 Internet Measurement Conference (London, United Kingdom) (IMC '17). Association for Computing Machinery, New York, NY, USA, 432-ì444. https://doi.org/10.1145/3131365.3131385Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Shaina J Sowles, Monique McLeary, Allison Optican, Elizabeth Cahn, Melissa J Krauss, Ellen E Fitzsimmons-Craft, Denise E Wilfley, and Patricia A Cavazos-Rehg. 2018. A content analysis of an online pro-eating disorder community on Reddit. Body image , Vol. 24 (2018), 137--144.Google ScholarGoogle Scholar
  128. Samuel Alan Stewart and Syed Sibte Raza Abidi. 2012. Applying social network analysis to understand the knowledge sharing behaviour of practitioners in a clinical online discussion forum. Journal of medical Internet research , Vol. 14, 6 (2012), e170.Google ScholarGoogle ScholarCross RefCross Ref
  129. Pranav Suri and Nihar Ranjan Roy. 2017. Comparison between LDA & NMF for event-detection from large text stream data. In 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT). IEEE, 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  130. Didi Surian, Dat Quoc Nguyen, Georgina Kennedy, Mark Johnson, Enrico Coiera, and Adam G Dunn. 2016. Characterizing Twitter discussions about HPV vaccines using topic modeling and community detection. Journal of medical Internet research , Vol. 18, 8 (2016), e232.Google ScholarGoogle ScholarCross RefCross Ref
  131. G Suryateja and P Saravanan. 2018. Optimization of Community Detection in Twitter Social Network. International Journal of Pure and Applied Mathematics , Vol. 118, 20 (2018), 745--758.Google ScholarGoogle Scholar
  132. Fernandez-Luque L. Jian W. S. Li Y. C. Crain S. Hsu M. H. ... & Liou D. M. Syed-Abdul, S. 2013. Misleading health-related information promoted through video-based social media: anorexia on YouTube. Journal of medical Internet research , Vol. 15, 2 (2013), e30. https://doi.org/10.2196/jmir.2237Google ScholarGoogle ScholarCross RefCross Ref
  133. Lauren C. Taylor, Kelsie Belan, Munmun De Choudhury, and Eric P. S. Baumer. 2021. Misfires, Missed Data, Misaligned Treatment: Disconnects in Collaborative Treatment of Eating Disorders. Proc. ACM Hum.-Comput. Interact. , Vol. 5, CSCW1, Article 31 (April 2021), bibinfonumpages28 pages. https://doi.org/10.1145/3449105Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Marika Tiggemann, Owen Churches, Lewis Mitchell, and Zoe Brown. 2018. Tweeting weight loss: A comparison of# thinspiration and# fitspiration communities on Twitter. Body Image , Vol. 25 (2018), 133--138.Google ScholarGoogle ScholarCross RefCross Ref
  135. Nicholas J.-Larsen M. E. Firth J. & Christensen H. Torous, J. 2018. Clinical review of user engagement with mental health smartphone apps: evidence, theory and improvements. Evidence-based mental health , Vol. 21, 3 (2018), 116--119. https://doi.org/10.1136/eb-2018--102891Google ScholarGoogle Scholar
  136. S. Vallor. 2012. Flourishing on facebook: virtue friendship & new social media. Ethics and Information technology , Vol. 14, 3 (2012), 185--199. https://doi.org/10.1007/s10676-010--9262--2Google ScholarGoogle Scholar
  137. & Wright-M. F. Wachs, S. 2019. The moderation of online disinhibition and sex on the relationship between online hate victimization and perpetration. Cyberpsychology, Behavior, and Social Networking , Vol. 22, 5 (2019), 300--306. https://doi.org/10.1089/cyber.2018.0551Google ScholarGoogle ScholarCross RefCross Ref
  138. Rui Wang, Weichen Wang, Min Hane Aung, Dror Ben-Zeev, Rachel Brian, Andrew T. Campbell, Tanzeem Choudhury, Marta Hauser, John Kane, Emily A. Scherer, and Megan Walsh. 2018. Predicting Symptom Trajectories of Schizophrenia Using Mobile Sensing. GetMobile: Mobile Comp. and Comm. , Vol. 22, 2 (Sept. 2018), 32-ì37. https://doi.org/10.1145/3276145.3276157Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Tao Wang, Markus Brede, Antonella Ianni, and Emmanouil Mentzakis. 2017. Detecting and Characterizing Eating-Disorder Communities on Social Media. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (Cambridge, United Kingdom) (WSDM '17). Association for Computing Machinery, New York, NY, USA, 91-ì100. https://doi.org/10.1145/3018661.3018706Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. Tao Wang, Markus Brede, Antonella Ianni, and Emmanouil Mentzakis. 2019. Characterizing dynamic communication in online eating disorder communities: a multiplex network approach. Applied Network Science , Vol. 4, 1 (2019), 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  141. Yuda Wang and Gang Li. 2018. The spreading of information in online social networks through cellular automata. Complexity , Vol. 2018 (2018).Google ScholarGoogle Scholar
  142. Massagli M.-Frost J. Brownstein C. Okun S. Vaughan T. Bradley R. Wicks, P. and J. Heywood. 2010. Sharing health data for better outcomes on PatientsLikeMe. Journal of medical Internet research , Vol. 12, 2 (2010), e19. https://doi.org/10.2196/jmir.1549Google ScholarGoogle ScholarCross RefCross Ref
  143. Pamela Wisniewski, Haiyan Jia, Na Wang, Saijing Zheng, Heng Xu, Mary Beth Rosson, and John M. Carroll. 2015. Resilience Mitigates the Negative Effects of Adolescent Internet Addiction and Online Risk Exposure. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI '15). Association for Computing Machinery, New York, NY, USA, 4029-ì4038. https://doi.org/10.1145/2702123.2702240Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Pamela Wisniewski, Heng Xu, Mary Beth Rosson, Daniel F. Perkins, and John M. Carroll. 2016. Dear Diary: Teens Reflect on Their Weekly Online Risk Experiences. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI '16). Association for Computing Machinery, New York, NY, USA, 3919-ì3930. https://doi.org/10.1145/2858036.2858317Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. Janis Wolak, Kimberly J Mitchell, and David Finkelhor. 2007. Does online harassment constitute bullying? An exploration of online harassment by known peers and online-only contacts. Journal of adolescent health , Vol. 41, 6 (2007), S51--S58.Google ScholarGoogle ScholarCross RefCross Ref
  146. Qin Wu, Xingqin Qi, Eddie Fuller, and Cun-Quan Zhang. 2013. -úfollow the leader-ù: A centrality guided clustering and its application to social network analysis. The Scientific World Journal , Vol. 2013 (2013).Google ScholarGoogle Scholar
  147. Weiai Wayne Xu, I-Hsuan Chiu, Yixin Chen, and Tanuka Mukherjee. 2015. Twitter hashtags for health: applying network and content analyses to understand the health knowledge sharing in a Twitter-based community of practice. Quality & Quantity , Vol. 49, 4 (2015), 1361--1380.Google ScholarGoogle ScholarCross RefCross Ref
  148. Dawei Yin, Zhenzhen Xue, Liangjie Hong, Brian D Davison, April Kontostathis, and Lynne Edwards. 2009. Detection of harassment on web 2.0. Proceedings of the Content Analysis in the WEB , Vol. 2 (2009), 1--7.Google ScholarGoogle Scholar
  149. Adam G Zimmerman and Gabriel J Ybarra. 2016. Online aggression: The influences of anonymity and social modeling. Psychology of Popular Media Culture , Vol. 5, 2 (2016), 181.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Cultivating the Community: Inferring Influence within Eating Disorder Networks on Twitter

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Proceedings of the ACM on Human-Computer Interaction
        Proceedings of the ACM on Human-Computer Interaction  Volume 6, Issue GROUP
        GROUP
        January 2022
        992 pages
        EISSN:2573-0142
        DOI:10.1145/3511803
        Issue’s Table of Contents

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 January 2022
        Published in pacmhci Volume 6, Issue GROUP

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader