skip to main content
research-article

Guided bubbles and wet foam for realistic whitewater simulation

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

We present a method for enhancing fluid simulations with realistic bubble and foam detail. We treat bubbles as discrete air particles, two-way coupled with a sparse volumetric Euler flow, as first suggested in [Stomakhin et al. 2020]. We elaborate further on their scheme and introduce a bubble inertia correction term for improved convergence. We also show how one can add bubbles to an already existing fluid simulation using our novel guiding technique, which performs local re-simulation of fluid to achieve more interesting bubble dynamics through coupling. As bubbles reach the surface, they are converted into foam and simulated separately. Our foam is discretized with smoothed particle hydrodynamics (SPH), and we replace forces normal to the fluid surface with a fluid surface manifold advection constraint to achieve more robust and stable results. The SPH forces are derived through proper constitutive modeling of an incompressible viscous liquid, and we explain why this choice is appropriate for "wet" types of foam. This allows us to produce believable dynamics from close-up scenarios to large oceans, with just a few parameters that work intuitively across a variety of scales. Additionally, we present relevant research on air entrainment metrics and bubble distributions that have been used in this work.

Skip Supplemental Material Section

Supplemental Material

117-148-supp-video.mp4

supplemental material

References

  1. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile surface tension and adhesion for SPH fluids. 32, 6 (Nov. 2013), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. T. B. Anderson and R. Jackson. 1967. Fluid Mechanical Description of Fluidized Beds. Equations of Motion. Indust. & Eng. Chem. Fund. 6, 4 (Nov. 1967), 527--539.Google ScholarGoogle Scholar
  3. Ryoichi Ando and Christopher Batty. 2020. A Practical Octree Liquid Simulator with Adaptive Surface Resolution. 39, 4, Article 32 (jul 2020), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Batty, F. Bertails, and R. Bridson. 2007. A Fast Variational Framework for Accurate Solid-fluid Coupling. ACM Trans. Graph. 26, 3, Article 100 (July 2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Markus Becker and Matthias Teschner. 2007. Weakly Compressible SPH for Free Surface Flows. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation 9 (01 2007), 209--217. Google ScholarGoogle ScholarCross RefCross Ref
  6. Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler. 2019. Turbulent Micropolar SPH Fluids with Foam. IEEE Transactions on Visualization and Computer Graphics 25 (2019), 2284--2295.Google ScholarGoogle Scholar
  7. Robert Bridson. 2015. Fluid Simulation for Computer Graphics, Second Edition. Taylor & Francis. https://books.google.com/books?id=7MySoAEACAAJGoogle ScholarGoogle Scholar
  8. Oleksiy Busaryev, Tamal K. Dey, Huamin Wang, and Zhong Ren. 2012. Animating bubble interactions in a liquid foam. 31, 4 (Aug. 2012), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Simon Clavet, Philippe Beaudoin, and Pierre Poulin. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation - SCA '05. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Paul W. Cleary, Soon Hyoung Pyo, Mahesh Prakash, and Bon Ki Koo. 2007. Bubbling and Frothing Liquids. ACM Trans. Graph. 26, 3 (jul 2007), 97--es. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. Daviet and F. Bertails-Descoubes. 2017. Simulation of Drucker-Prager granular flows inside Newtonian fluids. (Feb. 2017). Working paper or preprint.Google ScholarGoogle Scholar
  12. Walter Dehnen and Hossam Aly. 2012. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Monthly Notices of the Royal Astronomical Society 425, 2 (Aug. 2012), 1068--1082. Google ScholarGoogle ScholarCross RefCross Ref
  13. Luc Deike, W. Kendall Melville, and Stéphane Popinet. 2016. Air entrainment and bubble statistics in breaking waves. 801 (July 2016), 91--129. Google ScholarGoogle ScholarCross RefCross Ref
  14. F F Dunne, F Bolton, D Weaire, and S Hutzler. 2017. Statistics and topological changes in 2D foam from the dry to the wet limit. Philos. Mag. 97, 21 (July 2017), 1768--1781.Google ScholarGoogle ScholarCross RefCross Ref
  15. Douglas Enright, Stephen Marschner, and Ronald Fedkiw. 2002. Animation and Rendering of Complex Water Surfaces. ACM Trans. Graph. 21, 3 (July 2002), 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A Multi-scale Model for Simulating Liquid-fabric Interactions. ACM Trans. Graph. 37, 4, Article 51 (Aug. 2018), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A Polynomial Particle-in-Cell Method. ACM Trans. Graph. 36, 6, Article 222 (nov 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis, and Chenfanfu Jiang. 2018. Animating Fluid Sediment Mixture in Particle-Laden Flows. ACM Trans. Graph. 37, 4, Article 149 (jul 2018), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Carlo Gualtieri, Dragutin Mihailovic, Hubert Chanson, Benoit Cushman-Roisin, Guelfo Doria, Paola Gualtieri, George Kallos, Joe Ackerman, and Borivoi Rajkovic. 2008. Fluid Mechanics of Environmental Interfaces.Google ScholarGoogle Scholar
  20. Francis H. Harlow and J. Eddie Welch. 1965. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids 8 (1965), 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  21. Xiaowei He, H Wang, Fengjun Zhang, Guoping Wang, and Kun Zhou. 2014. Robust Simulation of Small-Scale Thin Features in SPH-based Free Surface Flows. Life.Kunzhou.Net 1, 212 (2014), 1--8.Google ScholarGoogle Scholar
  22. Jeong-Mo Hong, Ho-Young Lee, Jong-Chul Yoon, and Chang-Hun Kim. 2008. Bubbles Alive. In ACM SIGGRAPH 2008 Papers (Los Angeles, California) (SIGGRAPH '08). Association for Computing Machinery, New York, NY, USA, Article 48, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Christopher J Horvath. 2015. Empirical directional wave spectra for computer graphics (DigiPro '15). Association for Computing Machinery, 29--39.Google ScholarGoogle Scholar
  24. Markus Ihmsen, Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2012. Unified spray, foam and air bubbles for particle-based fluids. 28, 6--8 (April 2012), 669--677. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The Affine Particle-in-Cell Method. ACM Trans. Graph. 34, 4, Article 51 (jul 2015), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. 2010. A Practical Simulation of Dispersed Bubble Flow. ACM Trans. Graph. 29, 4, Article 70 (jul 2010), 5 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A B J Kroezen, J Groot Wassink, and C A C Schipper. 1988. The flow properties of foam. 104, 10 (Oct. 1988), 393--400. Google ScholarGoogle ScholarCross RefCross Ref
  28. Steve Lesser, Alexey Stomakhin, Gilles Daviet, Joel Wretborn, John Edholm, Noh hoon Lee, Eston Schweickart, Xiao Zhai, Sean Flynn, and Andrew Moffat. 2022. Loki: A Unified Multiphysics Simulation Framework for Production. ACM Trans. Graph. 41, 4, Article 50 (jul 2022). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating Water and Smoke with an Octree Data Structure. In ACM SIGGRAPH 2004 Papers (Los Angeles, California) (SIGGRAPH '04). ACM, New York, NY, USA, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. 2008. Two-Way Coupled SPH and Particle Level Set Fluid Simulation. IEEE Transactions on Visualization and Computer Graphics 14, 4 (2008), 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. J. Monaghan. 1992. Smoothed Particle Hydrodynamics. Vol. 30. 543--574 pages. Google ScholarGoogle ScholarCross RefCross Ref
  32. D. Morgenroth, S. Reinhardt, D. Weiskopf, and B. Eberhardt. 2020. Efficient 2D Simulation on Moving 3D Surfaces. 39, 8 (Nov. 2020), 27--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-Based Fluid Simulation for Interactive Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA '03). Eurographics Association, Goslar, DEU, 154--159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A Hybrid Lagrangian-Eulerian Formulation for Bubble Generation and Dynamics. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Anaheim, California) (SCA '13). Association for Computing Machinery, New York, NY, USA, 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit viscosity formulation for SPH fluids. ACM Transactions on Graphics 34, 4 (July 2015), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. B. Persson and M. Dahlberg. 1994. A Simple Model For Predicting Foam Spread Over Liquids. 4 (1994), 265--276. Google ScholarGoogle ScholarCross RefCross Ref
  37. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4, Article 102 (jul 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Alexey Stomakhin, Joel Wretborn, Kevin Blom, and Gilles Daviet. 2020. Underwater bubbles and coupling. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-Species Simulation of Porous Sand and Water Mixtures. ACM Trans. Graph. 36, 4, Article 105 (jul 2017), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Dominic Vella and L. Mahadevan. 2005. The "Cheerios effect". 73, 9 (Sept. 2005), 817--825. Google ScholarGoogle ScholarCross RefCross Ref
  42. Denis Weaire and Stefan Hutzler. 2001. The Physics of Foams. Oxford University Press.Google ScholarGoogle Scholar
  43. Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum Foam. 34, 5 (Nov. 2015), 1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yongning Zhu and Robert Bridson. 2005. Animating Sand As a Fluid. ACM Trans. Graph. 24, 3 (July 2005), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Guided bubbles and wet foam for realistic whitewater simulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader