skip to main content
research-article
Open Access

The power particle-in-cell method

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

This paper introduces a new weighting scheme for particle-grid transfers that generates hybrid Lagrangian/Eulerian fluid simulations with uniform particle distributions and precise volume control. At its core, our approach reformulates the construction of Power Particles [de Goes et al. 2015] by computing volume-constrained density kernels. We employ these optimized kernels as particle domains within the Generalized Interpolation Material Point method (GIMP) in order to incorporate Power Particles into the Particle-In-Cell framework, hence the name the Power Particle-In-Cell method. We address the construction of volume-constrained density kernels as a regularized optimal transportation problem and describe an iterative solver based on localized Gaussian convolutions that leads to a significant performance speedup compared to [de Goes et al. 2015]. We also present novel extensions for handling free surfaces and solid obstacles that bypass the need for cell clipping and ghost particles. We demonstrate the advantages of our transfer weights by improving hybrid schemes for fluid simulation such as the Fluid Implicit Particle (FLIP) method and the Affine Particle-In-Cell (APIC) method with volume preservation and robustness to varying particle-per-cell ratio, while retaining low numerical dissipation, conserving linear and angular momenta, and avoiding particle reseeding or post-process relaxations.

Skip Supplemental Material Section

Supplemental Material

118-172-supp-video.mp4

supplemental material

3528223.3530066.mp4

presentation

References

  1. Ryoichi Ando, Nils Thürey, and Reiji Tsuruno. 2012. Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles. IEEE Transactions on Visualization and Computer Graphics 18, 8 (2012), 1202--1214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly Adaptive Liquid Simulations on Tetrahedral Meshes. ACM Transactions on Graphics 32, 4, Article 103 (2013), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Franz Aurenhammer. 1987. Power Diagrams: Properties, Algorithms and Applications. SIAM J. Comput. 16, 1 (1987), 78--96.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Franz Aurenhammer, Friedrich Hoffmann, and Boris Aronov. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1 (1998), 61--76.Google ScholarGoogle ScholarCross RefCross Ref
  5. Michael Balzer, Thomas Schlömer, and Oliver Deussen. 2009. Capacity-Constrained Point Distributions: A Variant of Lloyd's Method. In ACM SIGGRAPH. Article 86, 8 pages.Google ScholarGoogle Scholar
  6. Scott G. Bardenhagen and Edward M. Kober. 2004. The generalized interpolation material point method. Computer Modeling in Engineering and Sciences 5, 6 (2004), 477--496.Google ScholarGoogle Scholar
  7. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics 26, 3 (2007), 100--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. In Symposium on Computer Animation. 209--217.Google ScholarGoogle Scholar
  9. Jan Bender and Dan Koschier. 2016. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3 (2016), 1193--1206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. 2011. Displacement Interpolation Using Lagrangian Mass Transport. ACM Transactions on Graphics 30, 6 (2011), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jeremiah U Brackbill and Hans M Ruppel. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2 (1986), 314--343.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Robert Bridson. 2015. Fluid simulation for computer graphics. CRC press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Rainer Burkard, Mauro Dell'Amico, and Silvano Martello. 2009. Assignment Problems. Society for Industrial and Applied Mathematics.Google ScholarGoogle Scholar
  14. Lenaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. 2018. Scaling algorithms for unbalanced optimal transport problems. Math. Comput. 87, 314 (2018), 2563--2609.Google ScholarGoogle ScholarCross RefCross Ref
  15. Jens Cornelis, Markus Ihmsen, Andreas Peer, and Matthias Teschner. 2014. IISPH-FLIP for incompressible fluids. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 255--262.Google ScholarGoogle Scholar
  16. Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems 26 (2013), 2292--2300.Google ScholarGoogle Scholar
  18. Marco Cuturi and Gabriel Peyré. 2018. Semidual Regularized Optimal Transport. SIAM Rev. 60, 4 (2018), 941--965.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun. 2015. Power Particles: an incompressible fluid solver based on power diagrams. ACM Transactions on Graphics 34, 4 (2015), 50--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Denis Demidov. 2019. AMGCL: An efficient, flexible, and extensible algebraic multigrid implementation. Lobachevskii Journal of Mathematics 40, 5 (2019), 535--546.Google ScholarGoogle ScholarCross RefCross Ref
  21. Ounan Ding, Tamar Shinar, and Craig Schroeder. 2020. Affine particle in cell method for MAC grids and fluid simulation. J. Comput. Phys. 408 (2020), 109311.Google ScholarGoogle ScholarCross RefCross Ref
  22. Yun Fei, Qi Guo, Rundong Wu, Li Huang, and Ming Gao. 2021. Revisiting integration in the material point method: a scheme for easier separation and less dissipation. ACM Transactions on Graphics 40, 4 (2021), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey. 2016. Narrow Band FLIP for Liquid Simulations. Computer Graphics Forum 35, 2 (2016), 225--232.Google ScholarGoogle ScholarCross RefCross Ref
  24. Nick Foster and Dimitri Metaxas. 1996. Realistic animation of liquids. Graphical models and image processing 58, 5 (1996), 471--483.Google ScholarGoogle Scholar
  25. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A polynomial particle-in-cell method. ACM Transactions on Graphics 36, 6 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Transactions on Graphics 36, 6 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Frederic Gibou, Ronald P Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176, 1 (2002), 205--227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  29. Francis H Harlow. 1962. The particle-in-cell method for numerical solution of problems in fluid dynamics. Technical Report. Los Alamos Scientific Lab., N. Mex.Google ScholarGoogle Scholar
  30. Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Transactions on Graphics 37, 4 (2018), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yuanming Hu, Xinxin Zhang, Ming Gao, and Chenfanfu Jiang. 2019. On hybrid lagrangian-eulerian simulation methods: practical notes and high-performance aspects. In ACM SIGGRAPH Courses. 16.Google ScholarGoogle Scholar
  32. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2013. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2013), 426--435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014. SPH fluids in computer graphics. In EUROGRAPHICS 2014/S. LEFEBVRE AND M. SPAGNUOLO. Citeseer.Google ScholarGoogle Scholar
  34. Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017a. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Transactions on Graphics 36, 4 (2017), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics 34, 4 (2015), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Chenfanfu Jiang, Craig Schroeder, and Joseph Teran. 2017b. An angular momentum conserving affine-particle-in-cell method. J. Comput. Phys. 338 (2017), 137--164.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The material point method for simulating continuum materials. In ACM SIGGRAPH Courses. 1--52.Google ScholarGoogle Scholar
  38. Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2019. Transport-Based Neural Style Transfer for Smoke Simulations. ACM Transactions on Graphics 38, 6, Article 188 (2019), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2020. Lagrangian Neural Style Transfer for Fluids. ACM Transactions on Graphics 39, 4, Article 52 (2020), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu Jiang, and Joseph Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Transactions on Graphics 35, 4 (2016), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Philip A. Knight. 2008. The Sinkhorn-Knopp Algorithm: Convergence and Applications. SIAM J. Matrix Anal. Appl. 30, 1 (2008), 261--275.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2020. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids. arXiv preprint arXiv:2009.06944 (2020).Google ScholarGoogle Scholar
  43. Tassilo Kugelstadt, Andreas Longva, Nils Thurey, and Jan Bender. 2019. Implicit density projection for volume conserving liquids. IEEE Transactions on Visualization and Computer Graphics (2019).Google ScholarGoogle Scholar
  44. Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics 14, 4 (2008), 797--804.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Bruno Lévy. 2022. Partial optimal transport for a constant-volume Lagrangian mesh with free boundaries. J. Comput. Phys. 451 (2022), 110838.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Transactions on Graphics 32, 4 (2013), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Manish Mandad, David Cohen-Steiner, Leif Kobbelt, Pierre Alliez, and Mathieu Desbrun. 2017. Variance-Minimizing Transport Plans for Inter-Surface Mapping. ACM Transactions on Graphics 36, 4, Article 39 (2017), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Quentin Mérigot and Jean-Marie Mirebeau. 2016. Minimal Geodesics Along Volume-Preserving Maps Through Semi-discrete Optimal Transport. SIAM J. Numer. Anal. 54, 6 (2016), 3465--3492.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Joseph J. Monaghan. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 8 (2005), 1703--1759.Google ScholarGoogle ScholarCross RefCross Ref
  50. Patrick Mullen, Alexander McKenzie, Yiying Tong, and Mathieu Desbrun. 2007. A Variational Approach to Eulerian Geometry Processing. In ACM SIGGRAPH.Google ScholarGoogle Scholar
  51. Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden, Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: an open-source data structure and toolkit for high-resolution volumes. In ACM SIGGRAPH Courses. 1--1.Google ScholarGoogle Scholar
  52. Rafael Nakanishi, Filipe Nascimento, Rafael Campos, Paulo Pagliosa, and Afonso Paiva. 2020. RBF liquids: an adaptive PIC solver using RBF-FD. ACM Transactions on Graphics 39, 6 (2020), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Gabriel Peyré, Marco Cuturi, et al. 2019. Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning 11, 5--6 (2019), 355--607.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Stefan Reinhardt, Tim Krake, Bernhard Eberhardt, and Daniel Weiskopf. 2019. Consistent shepard interpolation for SPH-based fluid animation. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Syuhei Sato, Yoshinori Dobashi, and Theodore Kim. 2021. Stream-Guided Smoke Simulations. ACM Transactions on Graphics 40, 4, Article 161 (2021), 7 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Takahiro Sato, Chris Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando. 2018. Extended Narrow Band FLIP for Liquid Simulations. Computer Graphics Forum (2018). Google ScholarGoogle ScholarCross RefCross Ref
  57. Richard Sinkhorn. 1967. Diagonal Equivalence to Matrices with Prescribed Row and Column Sums. The American Mathematical Monthly 74, 4 (1967), 402--405.Google ScholarGoogle ScholarCross RefCross Ref
  58. Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. In ACM SIGGRAPH. 1--6.Google ScholarGoogle Scholar
  59. Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. ACM Transactions on Graphics 34, 4 (2015), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Justin Solomon, Gabriel Peyré, Vladimir G. Kim, and Suvrit Sra. 2016. Entropic Metric Alignment for Correspondence Problems. ACM Transactions on Graphics 35, 4, Article 72 (2016), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A material point method for snow simulation. ACM Transactions on Graphics 32, 4 (2013), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Computer Physics Communications 87, 1--2 (1995), 236--252.Google ScholarGoogle ScholarCross RefCross Ref
  64. Tetsuya Takahashi and Ming C Lin. 2019. A Geometrically Consistent Viscous Fluid Solver with Two-Way Fluid-Solid Coupling. In Computer Graphics Forum, Vol. 38. 49--58.Google ScholarGoogle ScholarCross RefCross Ref
  65. Kiwon Um, Seungho Baek, and JungHyun Han. 2014. Advanced hybrid particle-grid method with sub-grid particle correction. In Computer Graphics Forum, Vol. 33. 209--218.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics 34, 5 (2015), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Xiao Zhai, Fei Hou, Hong Qin, and Aimin Hao. 2018. Fluid simulation with adaptive staggered power particles on gpus. IEEE Transactions on Visualization and Computer Graphics 26, 6 (2018), 2234--2246.Google ScholarGoogle ScholarCross RefCross Ref
  68. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965--972.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The power particle-in-cell method

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader