skip to main content
research-article
Open Access

Penetration-free projective dynamics on the GPU

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

We present a GPU algorithm for deformable simulation. Our method offers good computational efficiency and penetration-free guarantee at the same time, which are not common with existing techniques. The main idea is an algorithmic integration of projective dynamics (PD) and incremental potential contact (IPC). PD is a position-based simulation framework, favored for its robust convergence and convenient implementation. We show that PD can be employed to handle the variational optimization with the interior point method e.g., IPC. While conceptually straightforward, this requires a dedicated rework over the collision resolution and the iteration modality to avoid incorrect collision projection with improved numerical convergence. IPC exploits a barrier-based formulation, which yields an infinitely large penalty when the constraint is on the verge of being violated. This mechanism guarantees intersection-free trajectories of deformable bodies during the simulation, as long as they are apart at the rest configuration. On the downside, IPC brings a large amount of nonlinearity to the system, making PD slower to converge. To mitigate this issue, we propose a novel GPU algorithm named A-Jacobi for faster linear solve at the global step of PD. A-Jacobi is based on Jacobi iteration, but it better harvests the computation capacity on modern GPUs by lumping several Jacobi steps into a single iteration. In addition, we also re-design the CCD root finding procedure by using a new minimum-gradient Newton algorithm. Those saved time budgets allow more iterations to accommodate stiff IPC barriers so that the result is both realistic and collision-free. Putting together, our algorithm simulates complicated models of both solids and shells on the GPU at an interactive rate or even in real time.

Skip Supplemental Material Section

Supplemental Material

3528223.3530069.mp4

presentation

069-188-supp-video.mp4

supplemental material

References

  1. Farid Alizadeh, Jean-Pierre A Haeberly, and Michael L Overton. 1997. Complementarity and nondegeneracy in semidefinite programming. Mathematical programming 77, 1 (1997), 111--128.Google ScholarGoogle Scholar
  2. Owe Axelsson. 1977. Solution of linear systems of equations: iterative methods. In Sparse matrix techniques. Springer, 1--51.Google ScholarGoogle Scholar
  3. Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. ACM transactions on graphics (TOG) 30, 4 (2011), 1--8.Google ScholarGoogle Scholar
  4. Jernej Barbič and Doug L James. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. In ACM Trans. Graph. (TOG), Vol. 24. ACM, 982--990.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM transactions on graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques. 594--603.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Tyson Brochu, Essex Edwards, and Robert Bridson. 2012. Efficient geometrically exact continuous collision detection. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002a. Interactive skeleton-driven dynamic deformations. In ACM Trans. Graph. (TOG), Vol. 21. ACM, 586--593.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002b. A multiresolution framework for dynamic deformations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. 41--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Trans. on Visualization and Computer Graphics 11, 1 (2005), 91--101.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jinhyun Choo, Yidong Zhao, Yupeng Jiang, Minchen Li, Chenfanfu Jiang, and Kenichi Soga. 2021. A barrier method for frictional contact on embedded interfaces. arXiv:2107.05814 [math.NA]Google ScholarGoogle Scholar
  12. Sung-Jin Chung. 1989. NP-completeness of the linear complementarity problem. Journal of optimization theory and applications 60, 3 (1989), 393--399.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Richard W Cottle, Jong-Shi Pang, and Richard E Stone. 2009. The linear complementarity problem. SIAM.Google ScholarGoogle Scholar
  14. Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. In Proceedings of the 2011 SIGGRAPH Asia Conference. 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M Kaufman. 2021. Guaranteed globally injective 3D deformation processing. ACM Trans. Graph.(TOG) 40, 4 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Charbel Farhat, Michael Lesoinne, and Kendall Pierson. 2000. A scalable dual-primal domain decomposition method. Numerical linear algebra with applications 7, 7--8 (2000), 687--714.Google ScholarGoogle Scholar
  17. François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K Pai. 2011. Sparse meshless models of complex deformable solids. In ACM Trans. Graph. (TOG), Vol. 30. ACM, 73.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021. Intersection-free rigid body dynamics. ACM Transactions on Graphics 40, 4 (2021), 183.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A practical gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Marco Fratarcangeli, Huamin Wang, and Yin Yang. 2018. Parallel iterative solvers for real-time elastic deformations. In SIGGRAPH Asia 2018 Courses. 1--45.Google ScholarGoogle Scholar
  21. Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. (TOG) 36, 6 (2017), 223.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K Pai. 2011. Frame-based elastic models. ACM Trans. Graph. (TOG) 30, 2 (2011), 15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gene H Golub and Richard S Varga. 1961. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. Numer. Math. 3, 1 (1961), 157--168.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A simple framework for adaptive simulation. ACM transactions on graphics (TOG) 21, 3 (2002), 281--290.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. William W Hager. 1989. Updating the inverse of a matrix. SIAM review 31, 2 (1989), 221--239.Google ScholarGoogle Scholar
  26. David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun. 2009. Asynchronous contact mechanics. In ACM SIGGRAPH 2009 papers. 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Robust treatment of simultaneous collisions. In ACM SIGGRAPH 2008 papers. 1--4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kris K Hauser, Chen Shen, and James F O'Brien. 2003. Interactive Deformation Using Modal Analysis with Constraints.. In Graphics Interface, Vol. 3. 16--17.Google ScholarGoogle Scholar
  29. Florian Hecht, Yeon Jin Lee, Jonathan R Shewchuk, and James F O'Brien. 2012. Updated sparse cholesky factors for corotational elastodynamics. ACM Trans. Graph. (TOG) 31, 5 (2012), 123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rudi Helfenstein and Jonas Koko. 2012. Parallel preconditioned conjugate gradient algorithm on GPU. J. Comput. Appl. Math. 236, 15 (2012), 3584--3590.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nicholas J Higham. 2009. Cholesky factorization. Wiley Interdisciplinary Reviews: Computational Statistics 1, 2 (2009), 251--254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Takeo Igarashi, Tomer Moscovich, and John F Hughes. 2005. As-rigid-as-possible shape manipulation. ACM transactions on Graphics (TOG) 24, 3 (2005), 1134--1141.Google ScholarGoogle Scholar
  33. Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. 131--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Couro Kane, Jerrold E Marsden, Michael Ortiz, and Matthew West. 2000. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal for numerical methods in engineering 49, 10 (2000), 1295--1325.Google ScholarGoogle ScholarCross RefCross Ref
  35. Carl T Kelley. 1995. Iterative methods for linear and nonlinear equations. SIAM.Google ScholarGoogle Scholar
  36. Theodore Kim and Doug L James. 2009. Skipping steps in deformable simulation with online model reduction. In ACM Trans. Graph. (TOG), Vol. 28. ACM, 123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Theodore Kim and Doug L James. 2012. Physics-based character skinning using multidomain subspace deformations. IEEE transactions on visualization and computer graphics 18, 8 (2012), 1228--1240.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Martin Komaritzan and Mario Botsch. 2018. Projective skinning. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 1 (2018), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Martin Komaritzan and Mario Botsch. 2019. Fast projective skinning. In Motion, Interaction and Games. 1--10.Google ScholarGoogle Scholar
  40. Lei Lan, Ran Luo, Marco Fratarcangeli, Weiwei Xu, Huamin Wang, Xiaohu Guo, Junfeng Yao, and Yin Yang. 2020. Medial Elastics: Efficient and Collision-Ready Deformation via Medial Axis Transform. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang. 2021. Medial IPC: accelerated incremental potential contact with medial elastics. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental potential contact: Intersection- and inversion-free, large-deformation dynamics. ACM transactions on graphics 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021b. Codimensional Incremental Potential Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Xuan Li, Yu Fang, Minchen Li, and Chenfanfu Jiang. 2021a. BFEMP: Interpenetrationfree MPM-FEM coupling with barrier contact. Computer Methods in Applied Mechanics and Engineering (2021), 114350.Google ScholarGoogle Scholar
  45. Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. (TOG) 32, 6 (2013), 214:1--214:7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for real-time simulation of hyperelastic materials. Acm Transactions on Graphics (TOG) 36, 3 (2017), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ran Luo, Tianjia Shao, Huamin Wang, Weiwei Xu, Xiang Chen, Kun Zhou, and Yin Yang. 2018. NNWarp: Neural network-based nonlinear deformation. IEEE transactions on visualization and computer graphics 26, 4 (2018), 1745--1759.Google ScholarGoogle Scholar
  48. Miles Macklin and Matthias Muller. 2021. A Constraint-based Formulation of Stable Neo-Hookean Materials. In Motion, Interaction and Games. 1--7.Google ScholarGoogle Scholar
  49. Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based simulation of compliant constrained dynamics. In Proceedings of the 9th International Conference on Motion in Games. 49--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan Jeschke, and Matthias Müller. 2019. Small Steps in Physics Simulation. In Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '19). Association for Computing Machinery, New York, NY, USA, Article 2, 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified simulation of elastic rods, shells, and solids. In ACM Trans. Graph. (TOG), Vol. 29. ACM, 39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011. Example-based elastic materials. In ACM SIGGRAPH 2011 papers. 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2 (2007), 109--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005. Meshless deformations based on shape matching. In ACM Trans. Graph. (TOG), Vol. 24. ACM, 471--478.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Rahul Narain, Matthew Overby, and George E Brown. 2016. ADMM ⊇ projective dynamics: fast simulation of general constitutive models.. In Symposium on Computer Animation, Vol. 1. 2016.Google ScholarGoogle Scholar
  56. Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science & Business Media.Google ScholarGoogle Scholar
  57. Raymond W Ogden. 1997. Non-linear elastic deformations. Courier Corporation.Google ScholarGoogle Scholar
  58. Miguel A Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit contact handling for deformable objects. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 559--568.Google ScholarGoogle Scholar
  59. Matthew Overby, George E Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ projective dynamics: Fast simulation of hyperelastic models with dynamic constraints. IEEE Transactions on Visualization and Computer Graphics 23, 10 (2017), 2222--2234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Albert Peiret, Sheldon Andrews, József Kövecses, Paul G Kry, and Marek Teichmann. 2019. Schur complement-based substructuring of stiff multibody systems with contact. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Alex Pentland and John Williams. 1989. Good vibrations: Modal dynamics for graphics and animation. In SIGGRAPH Comput. Graph., Vol. 23. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Xavier Provot. 1997. Collision and self-collision handling in cloth model dedicated to design garments. In Computer Animation and Simulation'97. Springer, 177--189.Google ScholarGoogle Scholar
  63. Jason Sanders and Edward Kandrot. 2010. CUDA by example: an introduction to generalpurpose GPU programming. Addison-Wesley Professional.Google ScholarGoogle Scholar
  64. Siyuan Shen, Yang Yin, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan, and Kun Zhou. 2021. High-order Differentiable Autoencoder for Nonlinear Model Reduction. arXiv preprint arXiv:2102.11026 (2021).Google ScholarGoogle Scholar
  65. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean flesh simulation. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation multigrid for cloth simulation. ACM Trans. Graph. (TOG) 34, 6 (2015), 245.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018. I-Cloth: Incremental collision handling for GPU-based interactive cloth simulation. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Yun Teng, Mark Meyer, Tony DeRose, and Theodore Kim. 2015. Subspace condensation: Full space adaptivity for subspace deformations. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Demetri Terzopoulos and Kurt Fleischer. 1988. Deformable models. The visual computer 4, 6 (1988), 306--331.Google ScholarGoogle Scholar
  70. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically deformable models, In Proceedings of the 14th annual conference on Computer graphics and interactive techniques. ACM Siggraph Computer Graphics 21, 4, 205--214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Demetri Terzopoulos, Andrew Witkin, and Michael Kass. 1988. Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artificial intelligence 36, 1 (1988), 91--123.Google ScholarGoogle Scholar
  72. Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel Zachmann, Laks Raghupathi, Arnulph Fuhrmann, M-P Cani, François Faure, Nadia Magnenat-Thalmann, Wolfgang Strasser, et al. 2005. Collision detection for deformable objects. In Computer graphics forum, Vol. 24. Wiley Online Library, 61--81.Google ScholarGoogle Scholar
  73. Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance Computing on the Intel® Xeon Phi™. Springer, 167--188.Google ScholarGoogle Scholar
  74. Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the GPU. ACM Trans. Graph. (TOG) 35, 6 (2016), 212.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Qisi Wang, Yutian Tao, Eric Brandt, Court Cutting, and Eftychios Sifakis. 2021. Optimized processing of localized collisions in projective dynamics. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 382--393.Google ScholarGoogle Scholar
  77. Xinlei Wang, Minchen Li, Yu Fang, Xinxin Zhang, Ming Gao, Min Tang, Danny M Kaufman, and Chenfanfu Jiang. 2020. Hierarchical optimization time integration for cfl-rate mpm stepping. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Max Wardetzky, Miklós Bergou, David Harmon, Denis Zorin, and Eitan Grinspun. 2007. Discrete quadratic curvature energies. Computer Aided Geometric Design 24, 8--9 (2007), 499--518.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Jianhua Wu and Leif Kobbelt. 2005. Structure Recovery via Hybrid Variational Surface Approximation.. In Comput. Graph. Forum, Vol. 24. 277--284.Google ScholarGoogle ScholarCross RefCross Ref
  80. Longhua Wu, Botao Wu, Yin Yang, and Huamin Wang. 2020. A Safe and Fast Repulsion Method for GPU-based Cloth Self Collisions. ACM Transactions on Graphics (TOG) 40, 1 (2020), 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Xiaofeng Wu, Rajaditya Mukherjee, and Huamin Wang. 2015. A unified approach for subspace simulation of deformable bodies in multiple domains. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid method for real-time simulation of deformable objects. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting precomputation for reduced deformable simulation. ACM Trans. Graph. (TOG) 34, 6 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, and Baining Guo. 2013. Boundary-aware multidomain subspace deformation. IEEE transactions on visualization and computer graphics 19, 10 (2013), 1633--1645.Google ScholarGoogle ScholarCross RefCross Ref
  85. Juyong Zhang, Yue Peng, Wenqing Ouyang, and Bailin Deng. 2019. Accelerating ADMM for efficient simulation and optimization. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Xinyu Zhang, Minkyoung Lee, and Young J Kim. 2006. Interactive continuous collision detection for non-convex polyhedra. The Visual Computer 22, 9 (2006), 749--760.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans. Graph. (TOG) 29, 2 (2010), 16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, Perumal Nithiarasu, and JZ Zhu. 1977. The finite element method. Vol. 3. McGraw-hill London.Google ScholarGoogle Scholar

Index Terms

  1. Penetration-free projective dynamics on the GPU

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader