skip to main content
research-article

Computational design of high-level interlocking puzzles

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Interlocking puzzles are intriguing geometric games where the puzzle pieces are held together based on their geometric arrangement, preventing the puzzle from falling apart. High-level-of-difficulty, or simply high-level, interlocking puzzles are a subclass of interlocking puzzles that require multiple moves to take out the first subassembly from the puzzle. Solving a high-level interlocking puzzle is a challenging task since one has to explore many different configurations of the puzzle pieces until reaching a configuration where the first subassembly can be taken out. Designing a high-level interlocking puzzle with a user-specified level of difficulty is even harder since the puzzle pieces have to be interlocking in all the configurations before the first subassembly is taken out.

In this paper, we present a computational approach to design high-level interlocking puzzles. The core idea is to represent all possible configurations of an interlocking puzzle as well as transitions among these configurations using a rooted, undirected graph called a disassembly graph and leverage this graph to find a disassembly plan that requires a minimal number of moves to take out the first subassembly from the puzzle. At the design stage, our algorithm iteratively constructs the geometry of each puzzle piece to expand the disassembly graph incrementally, aiming to achieve a user-specified level of difficulty. We show that our approach allows efficient generation of high-level interlocking puzzles of various shape complexities, including new solutions not attainable by state-of-the-art approaches.

Skip Supplemental Material Section

Supplemental Material

150-192-supp-video.mp4

supplemental material

3528223.3530071.mp4

presentation

References

  1. Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner, Pat Hanrahan, and Barbara Tversky. 2003. Designing Effective Step-By-Step Assembly Instructions. ACM Trans. on Graph. (SIGGRAPH) 22, 3 (2003), 828--837.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bernd Bickel, Paolo Cignoni, Luigi Malomo, and Nico Pietroni. 2018. State of the Art on Stylized Fabrication. Comp. Graph. Forum 37, 6 (2018), 325--342.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Bourjault. 1984. Contribution a une approche méthodologique de l'assemblage automatisé: Elaboration automatique des séquences opératiores. Ph.D. Dissertation. L'Université de Franche-Comté.Google ScholarGoogle Scholar
  4. Stewart T. Coffin. 2006. Geometric Puzzle Design. A. K. Peters.Google ScholarGoogle Scholar
  5. Bill Cutler. 1988. Holey 6-Piece Burr! A Collection and Computer Analysis of Unusual Designs. http://billcutlerpuzzles.com/docs/H6PB/index.html.Google ScholarGoogle Scholar
  6. Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-aware Design of Printable Electromechanical Devices. In Proc. ACM UIST. 457--472.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-Hornung, and Mark Pauly. 2014. Assembling Self-Supporting Structures. ACM Trans. on Graph. (SIGGRAPH Asia) 33, 6 (2014), 214:1--214:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Noah Duncan, Lap-Fai Yu, Sai-Kit Yeung, and Demetri Terzopoulos. 2017. Approximate Dissections. ACM Trans. on Graph. (SIGGRAPH Asia) 36, 6 (2017), 182:1--182:14.Google ScholarGoogle Scholar
  9. Gershon Elber and Myung-Soo Kim. 2022. Synthesis of 3D Jigsaw Puzzles over Freeform 2-Manifolds. Comp. & Graph. (SMI) 102 (2022), 339--348.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Thomas L. De Fazio and Daniel E. Whitney. 1987. Simplified Generation of All Mechanical Assembly Sequences. IEEE Journal on Robotics and Automation RA-3, 6 (1987), 640--658.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chi-Wing Fu, Peng Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Kumar Jayaraman, and Daniel Cohen-Or. 2015. Computational Interlocking Furniture Assembly. ACM Trans. on Graph. (SIGGRAPH) 34, 4 (2015), 91:1--91:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Somayé Ghandi and Ellips Masehian. 2015. Review and Taxonomies of Assembly and Disassembly Path Planning Problems and Approaches. Computer-Aided Design 67--68 (2015), 58--86.Google ScholarGoogle Scholar
  13. David Gontier. 2020. Multi-level Interlocking Cubes. https://www.ceremade.dauphine.fr/~gontier/Puzzles/InterlockingPuzzles/interlocking.html.Google ScholarGoogle Scholar
  14. Jianwei Guo, Dong-Ming Yan, Er Li, Weiming Dong, Peter Wonka, and Xiaopeng Zhang. 2013. Illustrating the Disassembly of 3D Models. Comp. & Graph. (SMI) 37, 6 (2013), 574--581.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Halperin, J.-C. Latombe, and R. H. Wilson. 2000. A General Framework for Assembly Planning: The Motion Space Approach. Algorithmica 26, 3--4 (2000), 577--601.Google ScholarGoogle ScholarCross RefCross Ref
  16. IBM Research. 1997. The burr puzzles site. https://www.cs.brandeis.edu/~storer/JimPuzzles/BURR/000BURR/READING/IbmPage.pdf.Google ScholarGoogle Scholar
  17. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.Google ScholarGoogle Scholar
  18. P. Jiménez. 2013. Survey on Assembly Sequencing: A Combinatorial and Geometrical Perspective. Journal of Intelligent Manufacturing 24, 2 (2013), 235--250.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gene T.C. Kao, Axel Kórner, Daniel Sonntag, Long Nguyen, Achim Menges, and Jan Knippers. 2017. Assembly-aware Design of Masonry Shell Structures: A Computational Approach. In Proceedings of the International Association for Shell and Spatial Structures Symposium.Google ScholarGoogle Scholar
  20. Lydia Kavraki, Jean-Claude Latombe, and Randall H. Wilson. 1993. On the Complexity of Assembly Partitioning. Inform. Process. Lett. 48, 5 (1993), 229--235.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Bernhard Kerbl, Denis Kalkofen, Markus Steinberger, and Dieter Schmalstieg. 2015. Interactive Disassembly Planning for Complex Objects. Comp. Graph. Forum (Eurographics) 34, 2 (2015), 287--297.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Naoki Kita and Kazunori Miyata. 2020. Computational Design of Polyomino Puzzles. The Visual Computer (CGI) (2020), 1--11.Google ScholarGoogle Scholar
  23. Naoki Kita and Takafumi Saito. 2020. Computational Design of Generalized Centrifugal Puzzles. Comp. & Graph. (SMI) 90 (2020), 21--28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Duc Thanh Le, Juan Cortés, and Thierry Siméon. 2009. A Path Planning Approach to (Dis)Assembly Sequencing. In Proc. Int. Conf. on Automation Science and Engineering. 286--291.Google ScholarGoogle ScholarCross RefCross Ref
  25. Shuhua Li, Ali Mahdavi-amiri, Ruizhen Hu, Han Liu, Chanqing Zou, Oliver Van Kaick, Xiuping Liu, Hui Huang, and Hao Zhang. 2018. Construction and Fabrication of Reversible Shape Transforms. ACM Trans. on Graph. (SIGGRAPH Asia) 37, 6 (2018), 190:1--190:14.Google ScholarGoogle Scholar
  26. Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 2009. 3D Polyomino Puzzle. ACM Trans. on Graph. (SIGGRAPH Asia) 28, 5 (2009), 157:1--157:8.Google ScholarGoogle Scholar
  27. Ellips Masehian and Somayé Ghandi. 2020. ASPPR: A New Assembly Sequence and Path Planner/Replanner for Monotone and Nonmonotone Assembly Planning. Computer-Aided Design 123 (2020), 102828:1--102828:22.Google ScholarGoogle Scholar
  28. Ellips Masehian and Somayé Ghandi. 2021. Assembly Sequence and Path Planning for Monotone and Nonmonotone Assemblies with Rigid and Flexible Parts. Robotics and Computer-Integrated Manufacturing 72 (2021), 102180:1--102180:23.Google ScholarGoogle Scholar
  29. Luiz S. Homem De Mello and Arthur C. Sanderson. 1990. AND/OR Graph Representation of Assembly Plans. IEEE Transactions on Robotics and Automation 6, 2 (1990), 188--199.Google ScholarGoogle ScholarCross RefCross Ref
  30. Fakir S. Nooruddin and Greg Turk. 2003. Simplification and Repair of Polygonal Models Using Volumetric Techniques. IEEE Trans. Vis. & Comp. Graphics 9, 2 (2003), 191--205.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Andreas Röver. 2013. Burr Tools. http://burrtools.sourceforge.net/.Google ScholarGoogle Scholar
  32. Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang Liu. 2016. CofiFab: Coarse-to-Fine Fabrication of Large 3D Objects. ACM Trans. on Graph. (SIGGRAPH) 35, 4 (2016), 45:1--45:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive Interlocking Puzzles. ACM Trans. on Graph. (SIGGRAPH Asia) 31, 6 (2012), 128:1--128:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Peng Song, Chi-Wing Fu, Yueming Jin, Hongfei Xu, Ligang Liu, Pheng-Ann Heng, and Daniel Cohen-Or. 2017. Reconfigurable Interlocking Furniture. ACM Trans. on Graph. (SIGGRAPH Asia) 36, 6 (2017), 174:1--174:14.Google ScholarGoogle Scholar
  35. Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. 2015. Printing 3D Objects with Interlocking Parts. Comp. Aided Geom. Des. (GMP) 35--36 (2015), 137--148.Google ScholarGoogle Scholar
  36. Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Proc. Eurographics Symposium on Geometry Processing. 109--116.Google ScholarGoogle Scholar
  37. Timothy Sun and Changxi Zheng. 2015. Computational Design of Twisty Joints and Puzzles. ACM Trans. on Graph. (SIGGRAPH) 34, 4 (2015), 101:1--101:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Keke Tang, Peng Song, Xiaofei Wang, Bailin Deng, Chi-Wing Fu, and Ligang Liu. 2019. Computational Design of Steady 3D Dissection Puzzles. Comp. Graph. Forum (Eurographics) 38, 2 (2019), 291--303.Google ScholarGoogle ScholarCross RefCross Ref
  39. Jungfu Tsao and Jan Wolter. 1993. Assembly Planning with Intermediate States. In Proc. IEEE Int. Conf. on Robotics and Automation. 71--76.Google ScholarGoogle ScholarCross RefCross Ref
  40. Ziqi Wang, Peng Song, Florin Isvoranu, and Mark Pauly. 2019. Design and Structural Optimization of Topological Interlocking Assemblies. ACM Trans. on Graph. (SIGGRAPH Asia) 38, 6 (2019), 193:1--193:13.Google ScholarGoogle Scholar
  41. Ziqi Wang, Peng Song, and Mark Pauly. 2018. DESIA: A General Framework for Designing Interlocking Assemblies. ACM Trans. on Graph. (SIGGRAPH Asia) 37, 6 (2018), 191:1--191:14.Google ScholarGoogle Scholar
  42. Ziqi Wang, Peng Song, and Mark Pauly. 2021. State of the Art on Computational Design of Assemblies with Rigid Parts. Comp. Graph. Forum (Eurographics) 40, 2 (2021), 633--657.Google ScholarGoogle ScholarCross RefCross Ref
  43. Jan D. Wolter. 1991. A Combinatorial Analysis of Enumerative Data Structures for Assembly Planning. In Proc. IEEE Int. Conf. on Robotics and Automation. 611--618.Google ScholarGoogle ScholarCross RefCross Ref
  44. Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock, and Adriana Schulz. 2019. Carpentry Compiler. ACM Trans. on Graph. (SIGGRAPH Asia) 38, 6 (2019), 195:1--195:14.Google ScholarGoogle Scholar
  45. Shi-Qing Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He, and Daniel Cohen-Or. 2011. Making Burr Puzzles from 3D Models. ACM Trans. on Graph. (SIGGRAPH) 30, 4 (2011), 97:1--97:8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Miaojun Yao, Zhili Chen, Weiwei Xu, and Huamin Wang. 2017. Modeling, Evaluation and Optimization of Interlocking Shell Pieces. Comp. Graph. Forum (Pacific Graphics) 36, 7 (2017), 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  47. Yinan Zhang and Devin Balkcom. 2016. Interlocking Structure Assembly with Voxels. In Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. 2173--2180.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Yinan Zhang, Yotto Koga, and Devin Balkcom. 2021. Interlocking Block Assembly With Robots. IEEE Transactions on Automation Science and Engineering 18, 3 (2021), 902--916.Google ScholarGoogle ScholarCross RefCross Ref
  49. Yahan Zhou and Rui Wang. 2012. An Algorithm for Creating Geometric Dissection Puzzles. In Proc. Bridges Towson: Mathematics, Music, Art, Architecture, Culture. 49--56.Google ScholarGoogle Scholar

Index Terms

  1. Computational design of high-level interlocking puzzles

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader