skip to main content
research-article
Public Access

Energetically consistent inelasticity for optimization time integration

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

In this paper, we propose Energetically Consistent Inelasticity (ECI), a new formulation for modeling and discretizing finite strain elastoplasticity/viscoelasticity in a way that is compatible with optimization-based time integrators. We provide an in-depth analysis for allowing plasticity to be implicitly integrated through an augmented strain energy density function. We develop ECI on the associative von-Mises J2 plasticity, the non-associative Drucker-Prager plasticity, and the finite strain viscoelasticity. We demonstrate the resulting scheme on both the Finite Element Method (FEM) and the Material Point Method (MPM). Combined with a custom Newton-type optimization integration scheme, our method enables simulating stiff and large-deformation inelastic dynamics of metal, sand, snow, and foam with larger time steps, improved stability, higher efficiency, and better accuracy than existing approaches.

Skip Supplemental Material Section

Supplemental Material

3528223.3530072.mp4

presentation

052-196-supp-video.mp4

supplemental material

References

  1. Iván Alduán and Miguel A Otaduy. 2011. SPH granular flow with friction and cohesion. In Proceedings of the 2011 Symp. Computer animation. 25--32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. W. Bargteil, J. K. Hodgins C. Wojtan, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. on Graph. 26, 3 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. on Graph. 26, 3 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Jan Bender, Matthias Müller, and Miles Macklin. 2017. A survey on position based dynamics, 2017. In European Association for Computer Graphics: Tutorials. 1--31.Google ScholarGoogle Scholar
  5. Javier Bonet and Richard D Wood. 1997. Nonlinear continuum mechanics for finite element analysis. Cambridge university press.Google ScholarGoogle Scholar
  6. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. on Graph. 33, 4 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. U. Brackbill and H. M. Ruppel. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2 (1986).Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G.E. Brown, M. Overby, Z. Forootaninia, and R. Narain. 2018. Accurate dissipative forces in optimization integrators. ACM Trans. on Graph. 37, 6 (2018), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. George E Brown and Rahul Narain. 2021. WRAPD: weighted rotation-aware ADMM for parameterization and deformation. ACM Trans. on Graph. 40, 4 (2021), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jagabandhu Chakrabarty and WJ Drugan. 1988. Theory of plasticity. (1988).Google ScholarGoogle Scholar
  11. Wei Chen, Fei Zhu, Jing Zhao, Sheng Li, and Guoping Wang. 2018. Peridynamics-Based Fracture Animation for Elastoplastic Solids. In Computer Graphics Forum, Vol. 37.Google ScholarGoogle ScholarCross RefCross Ref
  12. Simon Clavet, Philippe Beaudoin, and Pierre Poulin. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the 2005 Symp. Computer animation. 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans. on Graph. 35, 4 (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dimitar Dinev, Tiantian Liu, and Ladislav Kavan. 2018. Stabilizing integrators for real-time physics. ACM Trans. on Graph. 37, 1 (2018), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Michael Falkenstein, Ben Jones, Joshua A Levine, Tamar Shinar, and Adam W Bargteil. 2017. Reclustering for large plasticity in clustered shape matching. In Proceedings of the Tenth International Conference on Motion in Games. 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Y. Fang, M. Li, M. Gao, and C. Jiang. 2019. Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans. on Graph. 38, 4 (2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2019. A multi-scale model for coupling strands with shear-dependent liquid. ACM Trans. on Graph. 38, 6 (2019), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021. Intersection-free rigid body dynamics. ACM Transactions on Graphics 40, 4 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018. GPU optimization of material point methods. ACM Trans. on Graph. 37, 6 (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. F. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J.M. Teran. 2015. Optimization integrator for large time steps. trans. on vis. and comp. graph. 21, 10 (2015).Google ScholarGoogle Scholar
  21. J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. 2018. Dynamic anticrack propagation in snow. Nature Communications 9, 1 (2018), 3047.Google ScholarGoogle ScholarCross RefCross Ref
  22. Dan Gerszewski, Haimasree Bhattacharya, and Adam W Bargteil. 2009. A point-based method for animating elastoplastic solids. In Symp. Computer animation. 133--138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. 2020. An implicit compressible SPH solver for snow simulation. ACM Trans. on Graph. 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Francis H Harlow. 1964. The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys. 3 (1964), 319--343.Google ScholarGoogle Scholar
  25. Xiaowei He, Huamin Wang, and Enhua Wu. 2017. Projective peridynamics for modeling versatile elastoplastic materials. trans. on vis. and comp. graph. 24, 9 (2017).Google ScholarGoogle Scholar
  26. Jan Hegemann, Chenfanfu Jiang, Craig Schroeder, and Joseph M Teran. 2013. A level set method for ductile fracture. In Symp. Computer animation. 193--201.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. on Graph. 37, 4 (2018), 150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tiffany Inglis, M-L Eckert, James Gregson, and Nils Thuerey. 2017. Primal-dual optimization for fluids. In Computer Graphics Forum, Vol. 36.Google ScholarGoogle ScholarCross RefCross Ref
  29. Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Symp. Computer animation. 131--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. 2006. Tetrahedral and hexahedral invertible finite elements. Graphical Models 68, 2 (2006), 66--89.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The Affine Particle-in-Cell Method. ACM Trans. Graph. 34, 4 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The material point method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses. 1--52.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ben Jones, April Martin, Joshua A Levine, Tamar Shinar, and Adam W Bargteil. 2016a. Ductile fracture for clustered shape matching. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 65--70.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ben Jones, Nils Thuerey, Tamar Shinar, and Adam W Bargteil. 2016b. Example-based plastic deformation of rigid bodies. ACM Trans. on Graph. 35, 4 (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ben Jones, Stephen Ward, Ashok Jallepalli, Joseph Perenia, and Adam W Bargteil. 2014. Deformation embedding for point-based elastoplastic simulation. ACM Trans. on Graph. 33, 2 (2014), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. I. Karamouzas, R. Sohre, N.and Narain, and S.J. Guy. 2017. Implicit crowds: Optimization integrator for robust crowd simulation. ACM Trans. on Graph. 36, 4 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans. on Graph. 35, 4 (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang. 2021. Medial IPC: accelerated incremental potential contact with medial elastics. ACM Trans. on Graph. 40, 4 (2021), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jing Li, Tiantian Liu, and Ladislav Kavan. 2018. Laplacian damping for projective dynamics. In Proceedings of the 14th Workshop on Virtual Reality Interactions and Physical Simulations. 29--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo, C. Jiang, and D.M. Kaufman. 2020. Incremental potential contact: Intersection-and inversion-free, large-deformation dynamics. ACM transactions on graphics (2020).Google ScholarGoogle Scholar
  41. M. Li, M. Gao, T. Langlois, C. Jiang, and D. M. Kaufman. 2019. Decomposed optimization time integrator for large-step elastodynamics. ACM Trans. on Graph. 38, 4 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021b. Codimensional Incremental Potential Contact. ACM Transactions on Graphics 40, 4 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. X. Li, Y. Fang, M. Li, and C. Jiang. 2021a. BFEMP: Interpenetration-free MPM-FEM coupling with barrier contact. Comp. meth. applied mech. eng. (2021).Google ScholarGoogle Scholar
  44. Yue Li, Xuan Li, Minchen Li, Yixin Zhu, Bo Zhu, and Chenfanfu Jiang. 2021c. Lagrangian-Eulerian multidensity topology optimization with the material point method. Internat. J. Numer. Methods Engrg. 122, 14 (2021), 3400--3424.Google ScholarGoogle ScholarCross RefCross Ref
  45. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans. on Graph. 36, 3 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. on Graph. 23, 3 (2004).Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. J. Visual Communication and Image Repres. 18, 2 (2007), 109--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Müller, B. Heidelberger, M. Teschner, and M. Gross. 2005. Meshless deformations based on shape matching. ACM Trans. on Graph. 24, 3 (2005).Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus Gross, and Marc Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the 2004 Symp. Computer animation. 141--151.Google ScholarGoogle Scholar
  50. Rahul Narain, Abhinav Golas, and Ming C Lin. 2010. Free-flowing granular materials with two-way solid coupling. In ACM SIGGRAPH Asia 2010 papers. 1--10.Google ScholarGoogle Scholar
  51. R. Narain, M. Overby, and G.E. Brown. 2016. ADMM ⊇ projective dynamics: fast simulation of general constitutive models.. In Symp. Comput. Animat., Vol. 1. 2016.Google ScholarGoogle Scholar
  52. Rahul Narain, Tobias Pfaff, and James F O'Brien. 2013. Folding and crumpling adaptive sheets. ACM Trans. on Graph. 32, 4 (2013), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Rahul Narain, Armin Samii, and James F O'Brien. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. on Graph. 31, 6 (2012), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. James F O'Brien, Adam W Bargteil, and Jessica K Hodgins. 2002. Graphical modeling and animation of ductile fracture. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques. 291--294.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Michael Ortiz and Laurent Stainier. 1999. The variational formulation of viscoplastic constitutive updates. Comp. meth. applied mech. eng. 171, 3--4 (1999), 419--444.Google ScholarGoogle Scholar
  56. R. Radovitzky and M. Ortiz. 1999. Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comp. meth. applied mech. eng. 172, 1--4 (1999).Google ScholarGoogle Scholar
  57. Stewart A Silling. 2000. Reformulation of elasticity theory for discontinuities and longrange forces. Journal of the Mechanics and Physics of Solids 48, 1 (2000), 175--209.Google ScholarGoogle ScholarCross RefCross Ref
  58. Juan C Simo. 1992. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp. meth. applied mech. eng. 99, 1 (1992), 61--112.Google ScholarGoogle Scholar
  59. Juan C Simo and Thomas JR Hughes. 1998. Computational inelasticity. Springer-Verlag.Google ScholarGoogle Scholar
  60. Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries. ACM Trans. on Graph. 34, 4 (2015), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Alexey Stomakhin, Russell Howes, Craig Schroeder, and Joseph M Teran. 2012. Energetically consistent invertible elasticity. In Proceedings of the 11th ACM SIGGRAPH/Eurographics conference on Computer Animation. 25--32.Google ScholarGoogle Scholar
  62. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans. on Graph. 32, 4 (2013), 102.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. D. Sulsky, Z. Chen, and H. L Schreyer. 1994. A particle method for history-dependent materials. Comp. meth. applied mech. eng. 118, 1--2 (1994).Google ScholarGoogle Scholar
  64. Yunxin Sun, Tamar Shinar, and Craig Schroeder. 2020. Effective time step restrictions for explicit MPM simulation. In Computer Graphics Forum, Vol. 39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans. on Graph. 36, 4 (2017), 105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 Symp. Computer animation. 181--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Demetri Terzopoulos and Kurt Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques. 269--278.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the GPU. ACM Trans. on Graph. 35, 6 (2016), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Xinlei Wang, Minchen Li, Yu Fang, Xinxin Zhang, Ming Gao, Min Tang, Danny M Kaufman, and Chenfanfu Jiang. 2020. Hierarchical optimization time integration for cfl-rate mpm stepping. ACM Trans. on Graph. 39, 3 (2020), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming meshes that split and merge. In ACM SIGGRAPH 2009 papers.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. In ACM SIGGRAPH 2008 papers. 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Tao Yang, Jian Chang, Ming C Lin, Ralph R Martin, Jian J Zhang, and Shi-Min Hu. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. on Graph. 36, 6 (2017), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Youtube. 2018. Crushing Long Steel Pipes with Hydraulic Press. https://www.youtube.com/watch?v=TM5dyY8zfxs&t=215sGoogle ScholarGoogle Scholar
  74. Youtube. 2021. Satisfying steel pipe crush video. https://www.youtube.com/watch?v=1s53ejidJgY&t=4sGoogle ScholarGoogle Scholar
  75. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Trans. on Graph. 34, 5 (2015), 160.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Y. Yue, B. Smith, P. Y. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun. 2018. Hybrid grains: Adaptive coupling of discrete and continuum simulations of granular media. In SIGGRAPH Asia 2018 Technical Papers. ACM, 283.Google ScholarGoogle Scholar

Index Terms

  1. Energetically consistent inelasticity for optimization time integration

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader