skip to main content
research-article
Public Access

A unified newton barrier method for multibody dynamics

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

We present a simulation framework for multibody dynamics via a universal variational integration. Our method naturally supports mixed rigid-deformables and mixed codimensional geometries, while providing guaranteed numerical convergence and accurate resolution of contact, friction, and a wide range of articulation constraints. We unify (1) the treatment of simulation degrees of freedom for rigid and soft bodies by formulating them both in terms of Lagrangian nodal displacements, (2) the handling of general linear equality joint constraints through an efficient change-of-variable strategy, (3) the enforcement of nonlinear articulation constraints based on novel distance potential energies, (4) the resolution of frictional contact between mixed dimensions and bodies with a variational Incremental Potential Contact formulation, and (5) the modeling of generalized restitution through semi-implicit Rayleigh damping. We conduct extensive unit tests and benchmark studies to demonstrate the efficacy of our method.

Skip Supplemental Material Section

Supplemental Material

3528223.3530076.mp4

presentation

References

  1. Masniezam Ahmad, Khairul A Ismail, and Fauziah Mat. 2016. Impact models and coefficient of restitution: a review. ARPN Journal of Engineering and Applied Sciences 11 (2016).Google ScholarGoogle Scholar
  2. Sheldon Andrews, Marek Teichmann, and Paul G Kry. 2017. Geometric Stiffness for Real-time Constrained Multibody Dynamics. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 235--246.Google ScholarGoogle Scholar
  3. Yunfei Bai and Karen Liu. 2014. Coupling cloth and rigid bodies for dexterous manipulation. In Proceedings of the Seventh International Conference on Motion in Games.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Baraff. 1989. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In Proceedings of the 16th annual conference on Computer graphics and interactive techniques. 223--232.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Nathan Bell, Yizhou Yu, and Peter J Mucha. 2005. Particle-based simulation of granular materials. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. 77--86.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM transactions on graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jumyung Chang, Fang Da, Eitan Grinspun, and Christopher Batty. 2019. A Unified Simplicial Model for Mixed-Dimensional and Non-Manifold Deformable Elastic Objects. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 2 (2019), 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Byoungwon Choe, Min Gyu Choi, and Hyeong-Seok Ko. 2005. Simulating complex hair with robust collision handling. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. 153--160.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eulalie Coevoet, Otman Benchekroun, and Paul G Kry. 2020. Adaptive merging for rigid body simulation. ACM Transactions on Graphics (TOG) 39, 4 (2020), 35--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Erwin Coumans. 2015. Bullet Physics Simulation. In ACM SIGGRAPH 2015 Courses. Article 7.Google ScholarGoogle Scholar
  11. Richard Courant, Kurt Friedrichs, and Hans Lewy. 1967. On the partial difference equations of mathematical physics. IBM journal of Research and Development 11, 2 (1967), 215--234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Crispin Deul, Patrick Charrier, and Jan Bender. 2016. Position-based rigid-body dynamics. Computer Animation and Virtual Worlds 27, 2 (2016), 103--112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Andreas Enzenhöfer, Nicolas Lefebvre, and Sheldon Andrews. 2019. Efficient block pivoting for multibody simulations with contact. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kenny Erleben. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Transactions on Graphics (TOG) 26, 2 (2007), 12--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021. Intersection-free rigid body dynamics. ACM Transactions on Graphics 40, 4 (2021), 183.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mihai Frâncu and Florica Moldoveanu. 2017a. Position based simulation of solids with accurate contact handling. Computers & Graphics 69 (2017), 12--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mihai Frâncu and Florica Moldoveanu. 2017b. Unified Simulation of Rigid and Flexible Bodies Using Position Based Dynamics.. In VRIPHYS. 49--58.Google ScholarGoogle Scholar
  18. Theodore F Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M Teran. 2015. Optimization integrator for large time steps. IEEE transactions on visualization and computer graphics 21, 10 (2015), 1103--1115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian Coros. 2020. ADD: analytically differentiable dynamics for multi-body systems with frictional contact. ACM Transactions on Graphics (TOG) 39, 6 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Eran Guendelman, Robert Bridson, and Ronald Fedkiw. 2003. Nonconvex rigid bodies with stacking. ACM transactions on graphics (TOG) 22, 3 (2003), 871--878.Google ScholarGoogle Scholar
  21. David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun. 2009. Asynchronous contact mechanics. In ACM SIGGRAPH 2009 papers. 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sumit Jain and Karen Liu. 2011. Controlling physics-based characters using soft contacts. In Proceedings of the 2011 SIGGRAPH Asia Conference. 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Danny M Kaufman, Timothy Edmunds, and Dinesh K Pai. 2005. Fast frictional dynamics for rigid bodies. In ACM SIGGRAPH 2005 Papers. 946--956.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Danny M Kaufman, Shinjiro Sueda, Doug L James, and Dinesh K Pai. 2008. Staggered projections for frictional contact in multibody systems. In ACM SIGGRAPH Asia 2008 papers. 1--11.Google ScholarGoogle Scholar
  25. Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir, and Wojciech Matusik. 2015. AutoConnect: computational design of 3D-printable connectors. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lei Lan, Danny M Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022. Affine Body Dynamics: Fast, Stable & Intersection-free Simulation of Stiff Materials. ACM Transactions on Graphics (TOG) 41, 4 (2022).Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang. 2021. Medial IPC: accelerated incremental potential contact with medial elastics. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jing Li, Tiantian Liu, and Ladislav Kavan. 2020b. Soft Articulated Characters in Projective Dynamics. IEEE Transactions on Visualization and Computer Graphics (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Minchen Li. 2020. Robust and Accurate Simulation of Elastodynamics and Contact. Ph.D. Dissertation. University of Pennsylvania.Google ScholarGoogle Scholar
  30. Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020a. Incremental potential contact: Intersection- and inversion-free, large-deformation dynamics. ACM transactions on graphics 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M Kaufman. 2019. Decomposed Optimization Time Integrator for Large-Step Elastodynamics. ACM Transactions on Graphics 38, 4 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Minchen Li, Danny M Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental Potential Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for real-time simulation of hyperelastic materials. Acm Transactions on Graphics (TOG) 36, 3 (2017), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke, and Viktor Makoviychuk. 2019. Non-smooth newton methods for deformable multi-body dynamics. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Hammad Mazhar, Toby Heyn, Dan Negrut, and Alessandro Tasora. 2015. Using Nesterov's method to accelerate multibody dynamics with friction and contact. ACM Transactions on Graphics (TOG) 34, 3 (2015), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Brian Mirtich and John Canny. 1994. Impulse-based dynamic simulation. Citeseer.Google ScholarGoogle Scholar
  37. Brian Vincent Mirtich. 1996. Impulse-based dynamic simulation of rigid body systems. University of California, Berkeley.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Jean J Moreau. 1985. Standard inelastic shocks and the dynamics of unilateral constraints. In Unilateral problems in structural analysis. Springer, 173--221.Google ScholarGoogle Scholar
  39. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2 (2007), 109--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong Kim. 2020. Detailed rigid body simulation with extended position based dynamics. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 101--112.Google ScholarGoogle Scholar
  41. Albert Peiret, Sheldon Andrews, József Kövecses, Paul G Kry, and Marek Teichmann. 2019. Schur complement-based substructuring of stiff multibody systems with contact. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jovan Popović, Steven M Seitz, Michael Erdmann, Zoran Popović, and Andrew Witkin. 2000. Interactive manipulation of rigid body simulations. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. 209--217.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Stephane Redon, Nico Galoppo, and Ming C Lin. 2005. Adaptive dynamics of articulated bodies. In ACM SIGGRAPH 2005 Papers. 936--945.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Edward John Routh. 1905. The advanced part of a treatise on the dynamics of a system of rigid bodies. MacMillan & Co.Google ScholarGoogle Scholar
  45. Robert Seifried, Werner Schiehlen, and Peter Eberhard. 2010. The role of the coefficient of restitution on impact problems in multi-body dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 224, 3 (2010), 279--306.Google ScholarGoogle ScholarCross RefCross Ref
  46. Tamar Shinar, Craig Schroeder, and Ronald Fedkiw. 2008. Two-way coupling of rigid and deformable bodies. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Citeseer, 95--103.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Breannan Smith, Danny M Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2012. Reflections on simultaneous impact. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. David E Stewart. 2000. Rigid-body dynamics with friction and impact. SIAM review 42, 1 (2000), 3--39.Google ScholarGoogle Scholar
  49. William J Stronge. 1991. Unraveling paradoxical theories for rigid body collisions. Journal of Applied Mechanics 58 (1991).Google ScholarGoogle Scholar
  50. Shinjiro Sueda, Garrett L Jones, David IW Levin, and Dinesh K Pai. 2011. Large-scale dynamic simulation of highly constrained strands. In ACM SIGGRAPH 2011 papers.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. 181--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational design of linkage-based characters. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable constrained dynamics. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Christopher D Twigg and Doug L James. 2008. Backward steps in rigid body simulation. In ACM SIGGRAPH 2008 papers. 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Jui-Hsien Wang, Rajsekhar Setaluri, Doug L James, and Dinesh K Pai. 2017. Bounce maps: an improved restitution model for real-time rigid-body impact. ACM Trans. Graph. 36, 4 (2017), 150--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yu Wang and Matthew T Mason. 1992. Two-dimensional rigid-body collisions with friction. Journal of Applied Mechanics 59 (1992).Google ScholarGoogle Scholar
  57. Ying Wang, Nicholas J Weidner, Margaret A Baxter, Yura Hwang, Danny M Kaufman, and Shinjiro Sueda. 2019. REDMAX: Efficient & flexible approach for articulated dynamics. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Rachel Weinstein, Joseph Teran, and Ronald Fedkiw. 2006. Dynamic simulation of articulated rigid bodies with contact and collision. IEEE Transactions on Visualization and Computer Graphics 12, 3 (2006), 365--374.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and Karen Liu. 2021. Fast and Feature-Complete Differentiable Physics Engine for Articulated Rigid Bodies with Contact Constraints. In Robotics: Science and Systems.Google ScholarGoogle Scholar
  60. Edmund Taylor Whittaker. 1937. A treatise on the analytical dynamics of particles and rigid bodies. CUP Archive.Google ScholarGoogle Scholar
  61. Hongyi Xu, Yili Zhao, and Jernej Barbič. 2014. Implicit multibody penalty-baseddistributed contact. IEEE transactions on visualization and computer graphics 20, 9 (2014), 1266--1279.Google ScholarGoogle ScholarCross RefCross Ref
  62. Yidong Zhao, Jinhyun Choo, Yupeng Jiang, Minchen Li, Chenfanfu Jiang, and Kenichi Soga. 2022. A barrier method for frictional contact on embedded interfaces. Computer Methods in Applied Mechanics and Engineering 393 (2022), 114820.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A unified newton barrier method for multibody dynamics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader