skip to main content
research-article
Open Access

NIMBLE: a non-rigid hand model with bones and muscles

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Emerging Metaverse applications demand reliable, accurate, and photorealistic reproductions of human hands to perform sophisticated operations as if in the physical world. While real human hand represents one of the most intricate coordination between bones, muscle, tendon, and skin, state-of-the-art techniques unanimously focus on modeling only the skeleton of the hand. In this paper, we present NIMBLE, a novel parametric hand model that includes the missing key components, bringing 3D hand model to a new level of realism. We first annotate muscles, bones and skins on the recent Magnetic Resonance Imaging hand (MRI-Hand) dataset [Li et al. 2021] and then register a volumetric template hand onto individual poses and subjects within the dataset. NIMBLE consists of 20 bones as triangular meshes, 7 muscle groups as tetrahedral meshes, and a skin mesh. Via iterative shape registration and parameter learning, it further produces shape blend shapes, pose blend shapes, and a joint regressor. We demonstrate applying NIMBLE to modeling, rendering, and visual inference tasks. By enforcing the inner bones and muscles to match anatomic and kinematic rules, NIMBLE can animate 3D hands to new poses at unprecedented realism. To model the appearance of skin, we further construct a photometric HandStage to acquire high-quality textures and normal maps to model wrinkles and palm print. Finally, NIMBLE also benefits learning-based hand pose and shape estimation by either synthesizing rich data or acting directly as a differentiable layer in the inference network.

Skip Supplemental Material Section

Supplemental Material

3528223.3530079.mp4

presentation

120-231-supp-video.mp4

supplemental material

References

  1. 3DSCANSTORE. 2022. 3D Scan Store: Captured Assets for Digital Artists. https://www.3dscanstore.com/Google ScholarGoogle Scholar
  2. Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Jacobson. 2021. Interactive Modelling of Volumetric Musculoskeletal Anatomy. ACM Trans. Graph. 40, 4, Article 122 (jul 2021), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Irene Albrecht, Jörg Haber, and Hans-Peter Seidel. 2003. Construction and animation of anatomically based human hand models. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Citeseer, 98--109.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brett Allen, Brian Curless, and Zoran Popović. 2003. The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans. ACM Trans. Graph. 22, 3 (jul 2003), 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brett Allen, Brian Curless, Zoran Popović, and Aaron Hertzmann. 2006. Learning a Correlated Model of Identity and Pose-Dependent Body Shape Variation for Real-Time Synthesis. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vienna, Austria) (SCA '06). Eurographics Association, Goslar, DEU, 147--156.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Pierre Alliez, Eric Colin De Verdire, Olivier Devillers, and Martin Isenburg. 2003. Isotropic surface remeshing. In 2003 Shape Modeling International. IEEE, 49--58.Google ScholarGoogle Scholar
  7. Amira. 2022. Amira Software for biomedical and life science research. https://www.thermofisher.com/hk/en/home/electron-microscopy/products/software-em-3d-vis/amira-software.htmlGoogle ScholarGoogle Scholar
  8. E. M. A. Anas, A. Rasoulian, A. Seitel, K. Darras, D. Wilson, P. S. John, D. Pichora, P. Mousavi, R. Rohling, and P. Abolmaesumi. 2016. Automatic Segmentation of Wrist Bones in CT Using a Statistical Wrist Shape + Pose Model. IEEE Transactions on Medical Imaging 35, 8 (2016), 1789--1801. Google ScholarGoogle ScholarCross RefCross Ref
  9. Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis. 2005. SCAPE: shape completion and animation of people. In ACM SIGGRAPH 2005 Papers. 408--416.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. 2019. Pushing the Envelope for RGB-Based Dense 3D Hand Pose Estimation via Neural Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  11. Luca Ballan, Aparna Taneja, Jürgen Gall, Luc Van Gool, and Marc Pollefeys. 2012. Motion capture of hands in action using discriminative salient points. In European Conference on Computer Vision. Springer, 640--653.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. 187--194.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Blender. 2021. Cycles renderer.Google ScholarGoogle Scholar
  14. Gunilla Borgefors. 1983. Chamfering: A fast method for obtaining approximations of the Euclidean distance in N dimensions. In Proc. 3rd Scand. Conf. on Image Analysis (SCIA3). 250--255.Google ScholarGoogle Scholar
  15. Steve Capell, Matthew Burkhart, Brian Curless, Tom Duchamp, and Zoran Popović. 2005. Physically based rigging for deformable characters. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. 301--310.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Martin de la gorce, David Fleet, and Nikos Paragios. 2011. Model-Based 3D Hand Pose Estimation from Monocular Video. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (10 2011), 1793 -- 1805. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Paul Debevec. 2012. The light stages and their applications to photoreal digital actors. SIGGRAPH Asia 2, 4 (2012), 1--6.Google ScholarGoogle Scholar
  18. Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, and Mark Sagar. 2000. Acquiring the reflectance field of a human face. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. 145--156.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Caroline Erolin, Clare Lamb, Roger Soames, and Caroline Wilkinson. 2016. Does Virtual Haptic Dissection Improve Student Learning? A Multi-Year Comparative Study.. In MMVR. 110--117.Google ScholarGoogle Scholar
  20. Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart. 2021. Learning an animatable detailed 3D face model from in-the-wild images. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nils Hasler, Thorsten Thormählen, Bodo Rosenhahn, and Hans-Peter Seidel. 2010. Learning Skeletons for Shape and Pose. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Washington, D.C.) (I3D '10). Association for Computing Machinery, New York, NY, USA, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kalevatykh, Michael J Black, Ivan Laptev, and Cordelia Schmid. 2019. Learning joint reconstruction of hands and manipulated objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 11807--11816.Google ScholarGoogle ScholarCross RefCross Ref
  23. Gentaro Hirota, Susan Fisher, A State, Chris Lee, and Henry Fuchs. 2001. An implicit finite element method for elastic solids in contact. In Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation (Cat. No. 01TH8596). IEEE, 136--254.Google ScholarGoogle ScholarCross RefCross Ref
  24. David A Hirshberg, Matthew Loper, Eric Rachlin, and Michael J Black. 2012. Coregistration: Simultaneous alignment and modeling of articulated 3D shape. In European conference on computer vision. Springer, 242--255.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Justin Johnson, Nikhila Ravi, Jeremy Reizenstein, David Novotny, Shubham Tulsiani, Christoph Lassner, and Steve Branson. 2020. Accelerating 3D Deep Learning with PyTorch3D. In SIGGRAPH Asia 2020 Courses (Virtual Event) (SA '20). Association for Computing Machinery, New York, NY, USA, Article 10, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav Křivánek, and Ladislav Kavan. 2016. Reconstructing personalized anatomical models for physics-based body animation. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Khamis, Jonathan Taylor, Jamie Shotton, Cem Keskin, Shahram Izadi, and Andrew W. Fitzgibbon. 2015. Learning an efficient model of hand shape variation from depth images. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), 2540--2548.Google ScholarGoogle ScholarCross RefCross Ref
  28. Junggon Kim and Nancy S. Pollard. 2011. Fast Simulation of Skeleton-Driven Deformable Body Characters. ACM Trans. Graph. 30, 5, Article 121 (oct 2011), 19 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Paul G Kry, Doug L James, and Dinesh K Pai. 2002. Eigenskin: real time large deformation character skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. 153--159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee Lee. 2018. Dexterous manipulation and control with volumetric muscles. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., USA, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Duo Li, Shinjiro Sueda, Debanga R. Neog, and Dinesh K. Pai. 2013. Thin Skin Elastodynamics. ACM Trans. Graph. 32, 4, Article 49 (jul 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tianye Li, Timo Bolkart, Michael J. Black, Hao Li, and Javier Romero. 2017. Learning a Model of Facial Shape and Expression from 4D Scans. ACM Trans. Graph. 36, 6, Article 194 (nov 2017), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yuwei Li, Minye Wu, Yuyao Zhang, Lan Xu, and Jingyi Yu. 2021. PIANO: A Parametric Hand Bone Model from Magnetic Resonance Imaging. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21. 816--822. Google ScholarGoogle ScholarCross RefCross Ref
  35. Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and Control of Skeleton-Driven Soft Body Characters. ACM Trans. Graph. 32, 6, Article 215 (nov 2013), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. 2015. SMPL: A skinned multi-person linear model. ACM transactions on graphics (TOG) 34, 6 (2015), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987), 163--169.Google ScholarGoogle Scholar
  38. N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. 1989. Joint-Dependent Local Deformations for Hand Animation and Object Grasping. In Proceedings on Graphics Interface '88 (Edmonton, Alberta, Canada). Canadian Information Processing Society, CAN, 26--33.Google ScholarGoogle Scholar
  39. Stan Melax, Leonid Keselman, and Sterling Orsten. 2013. Dynamics based 3D skeletal hand tracking. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 184--184.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M Mirakhorlo, N Van Beek, M Wesseling, H Maas, HEJ Veeger, and I Jonkers. 2018. A musculoskeletal model of the hand and wrist: model definition and evaluation. Computer methods in biomechanics and biomedical engineering 21, 9 (2018), 548--557.Google ScholarGoogle Scholar
  41. Gyeongsik Moon and Kyoung Mu Lee. 2020. I2l-meshnet: Image-to-lixel prediction network for accurate 3d human pose and mesh estimation from a single rgb image. In European Conference on Computer Vision. Springer, 752--768.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Gyeongsik Moon, Takaaki Shiratori, and Kyoung Mu Lee. 2020a. DeepHandMesh: A Weakly-Supervised Deep Encoder-Decoder Framework for High-Fidelity Hand Mesh Modeling. 440--455. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori, and Kyoung Mu Lee. 2020b. InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single RGB Image. In European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Franziska Mueller, Micah Davis, Florian Bernard, Oleksandr Sotnychenko, Mickeal Verschoor, Miguel A. Otaduy, Dan Casas, and Christian Theobalt. 2019. Real-time Pose and Shape Reconstruction of Two Interacting Hands With a Single Depth Camera. ACM Transactions on Graphics (TOG) 38, 4 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Richard A Newcombe, Dieter Fox, and Steven M Seitz. 2015. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE conference on computer vision and pattern recognition. 343--352.Google ScholarGoogle ScholarCross RefCross Ref
  46. Iasonas Oikonomidis, Nikolaos Kyriazis, and Antonis A. Argyros. 2011. Efficient model-based 3D tracking of hand articulations using Kinect. In BMVC.Google ScholarGoogle Scholar
  47. Nobuyuki Otsu. 1979. A threshold selection method from gray level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9 (1979), 62--66.Google ScholarGoogle ScholarCross RefCross Ref
  48. Surbhi Panchal-Kildare and Kevin Malone. 2013. Skeletal anatomy of the hand. Hand clinics 29, 4 (2013), 459--471.Google ScholarGoogle Scholar
  49. Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J Black. 2015. Dyna: A model of dynamic human shape in motion. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Neng Qian, Jiayi Wang, Franziska Mueller, Florian Bernard, Vladislav Golyanik, and Christian Theobalt. 2020. HTML: A Parametric Hand Texture Model for 3D Hand Reconstruction and Personalization. In European Conference on Computer Vision. Springer, 54--71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. R3DS. 2022. WRAP3D. https://www.russian3dscanner.com/Google ScholarGoogle Scholar
  52. Taehyun Rhee, John P Lewis, Ulrich Neumann, and Krishna Nayak. 2007. Soft-tissue deformation for in vivo volume animation. In 15th Pacific Conference on Computer Graphics and Applications (PG'07). IEEE, 435--438.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Javier Romero, Dimitrios Tzionas, and Michael J Black. 2017. Embodied hands: Modeling and capturing hands and bodies together. ACM Transactions on Graphics (ToG) 36, 6 (2017), 245.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, and Dinesh K. Pai. 2015. Biomechanical Simulation and Control of Hands and Tendinous Systems. ACM Trans. Graph. 34, 4, Article 42 (jul 2015), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Tanner Schmidt, Richard A. Newcombe, and Dieter Fox. 2014. DART: Dense Articulated Real-Time Tracking. In Robotics: Science and Systems.Google ScholarGoogle Scholar
  56. Robert J Schwarz and C Taylor. 1955. The anatomy and mechanics of the human hand. Artificial limbs 2, 2 (1955), 22--35.Google ScholarGoogle Scholar
  57. Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS) 41, 2 (2015), 1--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean flesh simulation. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Breannan Smith, Chenglei Wu, He Wen, Patrick Peluse, Yaser Sheikh, Jessica K Hodgins, and Takaaki Shiratori. 2020. Constraining dense hand surface tracking with elasticity. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Shinjiro Sueda, Andrew Kaufman, and Dinesh K. Pai. 2008. Musculotendon Simulation for Hand Animation. ACM Trans. Graph. 27, 3 (aug 2008), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Anastasia Tkach, Mark Pauly, and Andrea Tagliasacchi. 2016. Sphere-Meshes for Real-Time Hand Modeling and Tracking. ACM Trans. Graph. 35, 6, Article 222 (nov 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. 2018. A closer look at spatiotemporal convolutions for action recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 6450--6459.Google ScholarGoogle ScholarCross RefCross Ref
  63. Aggeliki Tsoli, Naureen Mahmood, and Michael J Black. 2014. Breathing life into shape: Capturing, modeling and animating 3D human breathing. ACM Transactions on graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Dimitrios Tzionas, Luca Ballan, Abhilash Srikantha, Pablo Aponte, Marc Pollefeys, and Juergen Gall. 2016. Capturing hands in action using discriminative salient points and physics simulation. International Journal of Computer Vision 118, 2 (2016), 172--193.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Bohan Wang, George Matcuk, and Jernej Barbič. 2019. Hand modeling and simulation using stabilized magnetic resonance imaging. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Bohan Wang, George Matcuk, and Jernej Barbič. 2021. Modeling of Personalized Anatomy using Plastic Strains. ACM Transactions on Graphics (TOG) 40, 2 (2021), 1--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. 2018. Pixel2mesh: Generating 3d mesh models from single rgb images. In Proceedings of the European Conference on Computer Vision (ECCV). 52--67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Lan Xu, Wei Cheng, Kaiwen Guo, Lei Han, Yebin Liu, and Lu Fang. 2019. Flyfusion: Real-time dynamic scene reconstruction using a flying depth camera. IEEE Transactions on Visualization and Computer Graphics (2019).Google ScholarGoogle Scholar
  69. Weipeng Xu, Avishek Chatterjee, Michael Zollhöfer, Helge Rhodin, Dushyant Mehta, Hans-Peter Seidel, and Christian Theobalt. 2018. MonoPerfCap: Human Performance Capture From Monocular Video. ACM Trans. Graph. 37, 2, Article 27 (May 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan Russell, Max Argus, and Thomas Brox. 2019. Freihand: A dataset for markerless capture of hand pose and shape from single rgb images. In Proceedings of the IEEE International Conference on Computer Vision. 813--822.Google ScholarGoogle ScholarCross RefCross Ref
  71. Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo Beeler, Patrick Pérez, Marc Stamminger, Matthias Nießner, and Christian Theobalt. 2018. State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications. Computer Graphics Forum 37 (2018).Google ScholarGoogle Scholar

Index Terms

  1. NIMBLE: a non-rigid hand model with bones and muscles

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader