skip to main content
research-article

Unified many-worlds browsing of arbitrary physics-based animations

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Manually tuning physics-based animation parameters to explore a simulation outcome space or achieve desired motion outcomes can be notoriously tedious. This problem has motivated many sophisticated and specialized optimization-based methods for fine-grained (keyframe) control, each of which are typically limited to specific animation phenomena, usually complicated, and, unfortunately, not widely used.

In this paper, we propose Unified Many-Worlds Browsing (UMWB), a practical method for sample-level control and exploration of physics-based animations. Our approach supports browsing of large simulation ensembles of arbitrary animation phenomena by using a unified volumetric WORLDPACK representation based on spatiotemporally compressed voxel data associated with geometric occupancy and other low-fidelity animation state. Beyond memory reduction, the WORLDPACK representation also enables unified query support for interactive browsing: it provides fast evaluation of approximate spatiotemporal queries, such as occupancy tests that find ensemble samples ("worlds") where material is either IN or NOT IN a user-specified spacetime region. WORLDPACKS also support real-time hardware-accelerated voxel rendering by exploiting the spatially hierarchical and temporal RLE raster data structure. Our UMWB implementation supports interactive browsing (and offline refinement) of ensembles containing thousands of simulation samples, and fast spatiotemporal queries and ranking. We show UMWB results using a wide variety of physics-based animation phenomena---not just JELL-O®.

Skip Supplemental Material Section

Supplemental Material

3528223.3530082.mp4
156-254-supp-video.mp4

supplemental material

References

  1. Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis. 2017. Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids. ACM Trans. Graph. 36, 4, Article 140 (July 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Okan Arikan. 2006. Compression of Motion Capture Databases. In ACM SIGGRAPH 2006 Papers. 890--897.Google ScholarGoogle Scholar
  3. Jernej Barbič and Jovan Popović. 2008. Real-Time Control of Physically Based Simulations Using Gentle Forces. ACM Trans. Graph. 27, 5, Article 163 (dec 2008), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ronen Barzel, John R Hughes, and Daniel N Wood. 1996. Plausible motion simulation for computer graphics animation. In Computer Animation and Simulation'96. Springer, 183--197.Google ScholarGoogle Scholar
  5. Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. 2007. TRACKS: Toward Directable Thin Shells. ACM Trans. Graph. 26, 3 (jul 2007), 50--es. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Stefan Bruckner and Torsten Möller. 2010. Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1468--1476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Stephen Chenney and D. A. Forsyth. 2000. Sampling Plausible Solutions to Multi-Body Constraint Problems. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., USA, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Steffen Weißmann. 2016. Schrödinger's smoke. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Michael F. Cohen. 1992. Interactive Spacetime Control for Animation. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '92). Association for Computing Machinery, New York, NY, USA, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Brian Curless and Marc Levoy. 1996. A Volumetric Method for Building Complex Models from Range Images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '96). Association for Computing Machinery, New York, NY, USA, 303--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Shen Ding-tao, Cui Can, and Wang Jie-chen. 2008. Implementation and Application of Intersection Operation Based on Run-Length Encoding. In 2008 International Conference on Computer Science and Software Engineering, Vol. 4. 602--606. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Raanan Fattal and Dani Lischinski. 2004. Target-driven Smoke Animation. In ACM SIGGRAPH 2004 Papers. 441--448.Google ScholarGoogle Scholar
  13. N. Foster and D. Metaxas. 1997. Controlling Fluid Animation. In Proceedings Computer Graphics International. 178--188. Google ScholarGoogle ScholarCross RefCross Ref
  14. Jie Guo, Mengtian Li, Zijing Zong, Yuntao Liu, Jingwu He, Yanwen Guo, and Ling-Qi Yan. 2021. Volumetric Appearance Stylization with Stylizing Kernel Prediction Network. ACM Trans. Graph. 40, 4, Article 162 (July 2021), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Paul S. Heckbert. 1987. Ray Tracing Jell-O® Brand Gelatin. SIGGRAPH Comput. Graph. 21, 4 (aug 1987), 73--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken Museth. 2006. Hierarchical RLE Level Set: A Compact and Versatile Deformable Surface Representation. ACM Trans. Graph. 25, 1 (Jan. 2006), 151--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ben Houston, Mark Wiebe, and Chris Batty. 2004. RLE Sparse Level Sets. In ACM SIGGRAPH 2004 Sketches. 137.Google ScholarGoogle Scholar
  18. Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, William T. Freeman, and Frédo Durand. 2021. QuanTaichi: A Compiler for Quantized Simulations. ACM Trans. Graph. 40, 4, Article 182 (jul 2021), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Timothy Jeruzalski, John Kanji, Alec Jacobson, and David I.W. Levin. 2018. Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization. Computer Graphics Forum (Proc. SCA) (2018).Google ScholarGoogle Scholar
  20. Aaron Demby Jones, Pradeep Sen, and Theodore Kim. 2016. Compressing Fluid Sub-spaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 77--84.Google ScholarGoogle Scholar
  21. Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2019. Transport-Based Neural Style Transfer for Smoke Simulations. ACM Transactions on Graphics (TOG) 38, 6 (2019), 188.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2020. Lagrangian Neural Style Transfer for Fluids. ACM Transactions on Graphics 39, 4, Article 52 (2020), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yuki Koyama, Issei Sato, and Masataka Goto. 2020. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. 39, 4, Article 88 (July 2020), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Samuli Laine and Tero Karras. 2010. Efficient Sparse Voxel Octrees. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Washington, D.C.) (I3D '10). Association for Computing Machinery, New York, NY, USA, 55--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Timothy R. Langlois and Doug L. James. 2014. Inverse-Foley Animation: Synchronizing rigid-body motions to sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (Aug. 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. John Lasseter. 1987. Principles of Traditional Animation Applied to 3D Computer Animation. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '87). Association for Computing Machinery, New York, NY, USA, 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jerome Edward Lengyel. 1999. Compression of Time-dependent Geometry. In Proceedings of the 1999 symposium on Interactive 3D graphics. 89--95.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh Manocha. 2018. Fluid Directed Rigid Body Control Using Deep Reinforcement Learning. ACM Trans. Graph. 37, 4, Article 96 (July 2018), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. 1997. Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97). ACM Press/Addison-Wesley Publishing Co., USA, 389--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control Using the Adjoint Method. ACM Trans. Graph. 23, 3 (Aug. 2004), 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ken Museth. 2011. DB+Grid: A Novel Dynamic Blocked Grid for Sparse High-Resolution Volumes and Level Sets. In ACM SIGGRAPH 2011 Talks (Vancouver, British Columbia, Canada) (SIGGRAPH '11). Association for Computing Machinery, New York, NY, USA, Article 51, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ken Museth. 2021. NanoVDB: A GPU-Friendly and Portable VDB Data Structure For Real-Time Rendering And Simulation. In ACM SIGGRAPH 2021 Talks (Virtual Event, USA) (SIGGRAPH '21). Association for Computing Machinery, New York, NY, USA, Article 1, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jelani Jelani Osei Nelson. 2011. Sketching and streaming high-dimensional vectors. Ph.D. Dissertation. Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  35. Michael B. Nielsen and Ken Museth. 2006. Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets. J. Sci. Comput. 26, 3 (March 2006), 261--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Michael B. Nielsen, Konstantinos Stamatelos, Morten Bojsen-Hansen, Duncan Brinsmead, Yannick Pomerleau, Marcus Nordenstam, and Robert Bridson. 2018. A Collocated Spatially Adaptive Approach to Smoke Simulation in Bifrost. In ACM SIGGRAPH 2018 Talks (Vancouver, British Columbia, Canada) (SIGGRAPH '18). Association for Computing Machinery, New York, NY, USA, Article 77, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Carol O'Sullivan, John Dingliana, Thanh Giang, and Mary K. Kaiser. 2003. Evaluating the Visual Fidelity of Physically Based Animations. ACM Trans. Graph. 22, 3 (jul 2003), 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Masafumi Oyamada, Jianquan Liu, Shinji Ito, Kazuyo Narita, Takuya Araki, and Hiroyuki Kitagawa. 2018. Compressed Vector Set: A Fast and Space-Efficient Data Mining Framework. Journal of Information Processing 26 (2018), 416--426.Google ScholarGoogle ScholarCross RefCross Ref
  39. Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive Localized Liquid Motion Editing. ACM Trans. Graph. 32, 6, Article 184 (nov 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jovan Popović, Steven M Seitz, and Michael Erdmann. 2003. Motion sketching for control of rigid-body simulations. ACM Transactions on Graphics (TOG) 22, 4 (2003), 1034--1054.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Jovan Popović, Steven M. Seitz, Michael Erdmann, Zoran Popović, and Andrew Witkin. 2000. Interactive Manipulation of Rigid Body Simulations. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., USA, 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Hanan Samet. 2006. Foundations of multidimensional and metric data structures. Morgan Kaufmann.Google ScholarGoogle Scholar
  43. Syuhei Sato, Yoshinori Dobashi, and Theodore Kim. 2021. Stream-Guided Smoke Simulations. ACM Trans. Graph. 40, 4, Article 161 (July 2021), 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Mirko Sattler, Ralf Sarlette, and Reinhard Klein. 2005. Simple and Efficient Compression of Animation Sequences. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '05). Association for Computing Machinery, New York, NY, USA, 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Khalid Sayood. 2017. Introduction to Data Compression. Morgan Kaufmann.Google ScholarGoogle Scholar
  46. Arnaud Schoentgen, Pierre Poulin, Emmanuelle Darles, and Philippe Meseure. 2020. Particle-Based Liquid Control Using Animation Templates. Eurographics Association, Goslar, DEU. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans. Graph. 33, 6, Article 205 (Nov. 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Lin Shi and Yizhou Yu. 2005. Controllable Smoke Animation with Guiding Objects. ACM Transactions on Graphics 24 (01 2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Evan Shimizu, Matthew Fisher, S. Paris, J. McCann, and K. Fatahalian. 2020. Design Adjectives: A Framework for Interactive Model-Guided Exploration of Parameterized Design Spaces. Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. SideFX. 2021. Houdini Engine. http://www.sidefx.com.Google ScholarGoogle Scholar
  51. Jerry O. Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and Vladlen Koltun. 2009. Exploratory Modeling with Collaborative Design Spaces. ACM Trans. Graph. 28, 5 (Dec. 2009), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Diane Tang, J Thomas Ngo, and Joe Marks. 1995. N-body Spacetime Constraints. The Journal of Visualization and Computer Animation 6, 3 (1995), 143--154.Google ScholarGoogle ScholarCross RefCross Ref
  53. N. Thürey, R. Keiser, M. Pauly, and U. Rüde. 2006. Detail-Preserving Fluid Control. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vienna, Austria) (SCA '06). Eurographics Association, Goslar, DEU, 7--12.Google ScholarGoogle Scholar
  54. Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe Control of Smoke Simulations. ACM Trans. Graph. 22, 3 (jul 2003), 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Christopher D. Twigg and Doug L. James. 2007. Many-Worlds Browsing for Control of Multibody Dynamics. ACM Trans. Graph. 26, 3 (July 2007), 14--es. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '88). Association for Computing Machinery, New York, NY, USA, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Chris Wojtan, Peter J Mucha, and Greg Turk. 2006. Keyframe control of complex particle systems using the adjoint method. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation. 15--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang. 2020. Interactive Liquid Splash Modeling by User Sketches. ACM Trans. Graph. 39, 6, Article 165 (Nov. 2020), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Thomas Y Yeh, Glenn Reinman, Sanjay J Patel, and Petros Faloutsos. 2009. Fool me twice: Exploring and exploiting error tolerance in physics-based animation. ACM Transactions on Graphics (TOG) 29, 1 (2009), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Unified many-worlds browsing of arbitrary physics-based animations

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader