skip to main content
research-article

Rapid design of articulated objects

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Designing articulated objects is challenging because, unlike with static objects, it requires complex decisions to be made regarding the form, parts, rig, poses, and motion. We present a novel 3D sketching system for rapidly authoring concepts of articulated objects for the early stages of design, when designers make such decisions. Compared to existing CAD software, which focuses on slowly but elaborately producing models consisting of precise surfaces and volumes, our system focuses on quickly but roughly producing models consisting of key curves through a small set of coherent pen and multi-touch gestures. We found that professional designers could easily learn and use our system and author compelling concepts in a short time, showing that 3D sketching can be extended to designing articulated objects and is generally applicable in film, animation, game, and product design.

Skip Supplemental Material Section

Supplemental Material

3528223.3530092.mp4

presentation

089-293-supplementary_video.mp4

supplemental material

References

  1. Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman, Karan Singh, and George Fitzmaurice. 2017. Experimental evaluation of sketching on surfaces in VR. In Proc. CHI '17. 5643--5654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Rahul Arora and Karan Singh. 2021. Mid-air drawing of curves on 3D surfaces in virtual reality. ACM Trans. Graph. 40, 3, Article 33 (Jul 2021), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Oscar Kin-Chung Au, Chiew-Lan Tai, and Hongbo Fu. 2012. Multitouch gestures for constrained transformation of 3D objects. Comput. Graph. Forum 31, 2 (2012), 651--660. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: as-natural-as-possible sketching system for creating 3D curve models. In Proc. UIST '08. 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2009. EverybodyLovesSketch: 3D sketching for a broader audience. In Proc. UIST '09. 59--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ronald M. Baecker. 1969. Picture-driven animation. In Proc. AFIPS '69 (Spring). 273--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Péter Borosán, Ming Jin, Doug DeCarlo, Yotam Gingold, and Andrew Nealen. 2012. RigMesh: automatic rigging for part-based shape modeling and deformation. ACM Trans. Graph. 31, 6, Article 198 (Nov 2012), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Byungkuk Choi, Roger Blanco i Ribera, J. P. Lewis, Yeongho Seol, Seokpyo Hong, Haegwang Eom, Sunjin Jung, and Junyong Noh. 2016. SketchiMo: sketch-based motion editing for articulated characters. ACM Trans. Graph. 35, 4, Article 146 (Jul 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Aurélie Cohé, Fabrice Dècle, and Martin Hachet. 2011. tBox: a 3D transformation widget designed for touch-screens. In Proc. CHI '11. 3005--3008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Richard C. Davis, Brien Colwell, and James A. Landay. 2008. K-Sketch: a "kinetic" sketch pad for novice animators. In Proc. CHI '08. 413--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowitcz, Derek Nowrouzezahrai, Ravin Balakrishnan, and Karan Singh. 2008. Video browsing by direct manipulation. In Proc. CHI '08. 237--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Marek Dvorožňák, Daniel Sýkora, Cassidy Curtis, Brian Curless, Olga Sorkine-Hornung, and David Salesin. 2020. Monster mash: a single-view approach to casual 3D modeling and animation. ACM Trans. Graph. 39, 6, Article 214 (Nov 2020), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-Paule Cani. 2015. Space-time sketching of character animation. ACM Trans. Graph. 34, 4, Article 118 (Jul 2015), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Yves Guiard. 1987. Asymmetric division of labor in human skilled bimanual action. J. Mot. Behav. 19, 4 (1987), 486--517. Google ScholarGoogle ScholarCross RefCross Ref
  15. Devamardeep Hayatpur, Seongkook Heo, Haijun Xia, Wolfgang Stuerzlinger, and Daniel Wigdor. 2019. Plane, ray, and point: enabling precise spatial manipulations with shape constraints. In Proc. UIST '19. 1185--1195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ken Hinckley, Koji Yatani, Michel Pahud, Nicole Coddington, Jenny Rodenhouse, Andy Wilson, Hrvoje Benko, and Bill Buxton. 2010. Pen + touch = new tools. In Proc. UIST '10. 27--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Takeo Igarashi and John F. Hughes. 2003. Smooth meshes for sketch-based freeform modeling. In Proc. I3D '03. 139--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: a sketching interface for 3D freeform design. In Proc. SIGGRAPH '99. 409--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3 (Jul 2005), 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ming Jin, Dan Gopstein, Yotam Gingold, and Andrew Nealen. 2015. AniMesh: interleaved animation, modeling, and editing. ACM Trans. Graph. 34, 6, Article 207 (Oct 2015), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Thorsten Karrer, Malte Weiss, Eric Lee, and Jan Borchers. 2008. DRAGON: a direct manipulation interface for frame-accurate in-scene video navigation. In Proc. CHI '08. 247--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice. 2014. Kitty: sketching dynamic and interactive illustrations. In Proc. UIST '14. 395--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yongkwan Kim, Sang-Gyun An, Joon Hyub Lee, and Seok-Hyung Bae. 2018. Agile 3D sketching with air scaffolding. In Proc. CHI '18. Article 238, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yongkwan Kim and Seok-Hyung Bae. 2016. SketchingWithHands: 3D sketching handheld products with first-person hand posture. In Proc. UIST '16. 797--808. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Joon Hyub Lee, Hyung-Gi Ham, and Seok-Hyung Bae. 2020. 3D sketching for multi-pose products. In CHI EA '20. Article 261, 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Xiaolong Li, He Wang, Li Yi, Leonidas J. Guibas, A. Lynn Abbott, and Shuran Song. 2020. Category-level articulated object pose estimation. In Proc. CVPR '20. 3706--3715. Google ScholarGoogle ScholarCross RefCross Ref
  27. C. Karen Liu and Zoran Popović. 2002. Synthesis of complex dynamic character motion from simple animations. ACM Trans. Graph. 21, 3 (Jul 2002), 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Daniel Mendes, Fabio Marco Caputo, Andrea Giachetti, Alfredo Ferreira, and Joaquim Jorge. 2019. A survey on 3D virtual object manipulation: from the desktop to immersive virtual environments. Comput. Graph. Forum 38, 1 (2019), 21--45. Google ScholarGoogle ScholarCross RefCross Ref
  29. Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007. FiberMesh: designing freeform surfaces with 3D curves. In Proc. SIGGRAPH '07. 41--es. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jason L. Reisman, Philip L. Davidson, and Jefferson Y. Han. 2009. A screen-space formulation for 2D and 3D direct manipulation. In Proc. UIST '09. 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tianjia Shao, Wilmot Li, Kun Zhou, Weiwei Xu, Baining Guo, and Niloy J. Mitra. 2013. Interpreting concept sketches. ACM Trans. Graph. 32, 4, Article 56 (Jul 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sebastian Starke, Norman Hendrich, Dennis Krupke, and Jianwei Zhang. 2017. Evolutionary multi-objective inverse kinematics on highly articulated and humanoid robots. In Proc. IROS '17. 6959--6966. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Matthew Thorne, David Burke, and Michiel van de Panne. 2004. Motion doodles: an interface for sketching character motion. ACM Trans. Graph. 23, 3 (Aug 2004), 424--431. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Benjamin Walther-Franks, Marc Herrlich, Thorsten Karrer, Moritz Wittenhagen, Roland Schröder-Kroll, Rainer Malaka, and Jan Borchers. 2012. DRAGIMATION: direct manipulation keyframe timing for performance-based animation. In Proc. GI '12. 101--108.Google ScholarGoogle Scholar
  35. Lumin Yang, Jiajie Zhuang, Hongbo Fu, Xiangzhi Wei, Kun Zhou, and Youyi Zheng. 2021. SketchGNN: semantic sketch segmentation with graph neural networks. ACM Trans. Graph. 40, 3, Article 28 (Aug 2021), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Emilie Yu, Rahul Arora, Tibor Stanko, J. Andreas Bærentzen, Karan Singh, and Adrien Bousseau. 2021a. CASSIE: curve and surface sketching in immersive environments. In Proc. CHI '21. Article 190, 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold. 2021b. ScaffoldSketch: accurate industrial design drawing in VR. In Proc. UIST '21. 372--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. 1996. SKETCH: an interface for sketching 3D scenes. In Proc. SIGGRAPH '96. 163--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural networks for quadruped motion control. ACM Trans. Graph. 37, 4, Article 145 (Jul 2018), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Rapid design of articulated objects

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader