skip to main content
research-article
Open Access

Regression-based Monte Carlo integration

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Monte Carlo integration is typically interpreted as an estimator of the expected value using stochastic samples. There exists an alternative interpretation in calculus where Monte Carlo integration can be seen as estimating a constant function---from the stochastic evaluations of the integrand---that integrates to the original integral. The integral mean value theorem states that this constant function should be the mean (or expectation) of the integrand. Since both interpretations result in the same estimator, little attention has been devoted to the calculus-oriented interpretation. We show that the calculus-oriented interpretation actually implies the possibility of using a more complex function than a constant one to construct a more efficient estimator for Monte Carlo integration. We build a new estimator based on this interpretation and relate our estimator to control variates with least-squares regression on the stochastic samples of the integrand. Unlike prior work, our resulting estimator is provably better than or equal to the conventional Monte Carlo estimator. To demonstrate the strength of our approach, we introduce a practical estimator that can act as a simple drop-in replacement for conventional Monte Carlo integration. We experimentally validate our framework on various light transport integrals. The code is available at https://github.com/iribis/regressionmc.

Skip Supplemental Material Section

Supplemental Material

3528223.3530095.mov

presentation

References

  1. Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, and Derek Nowrouzezahrai. 2018. Integrating clipped spherical harmonics expansions. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted First-Order Regression for Denoising Monte Carlo Renderings. 35, 4 (June 2016), 107--117. Google ScholarGoogle ScholarCross RefCross Ref
  3. Petrik Clarberg and Tomas Akenine-Möller. 2008. Exploiting Visibility Correlation in Direct Illumination. 27, 4 (2008), 1125--1136. Google ScholarGoogle ScholarCross RefCross Ref
  4. Miguel Crespo, Adrian Jarabo, and Adolfo Muñoz. 2021. Primary-Space Adaptive Control Variates Using Piecewise-Polynomial Approximations. ACM Trans. Graph. 40, 3, Article 25 (jul 2021), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Philip J Davis. 2013. Methods of numerical integration. Academic, New York; London.Google ScholarGoogle Scholar
  6. Shaohua Fan, Stephen Chenney, Bo Hu, Kam-Wah Tsui, and Yu-Chi Lai. 2006. Optimizing Control Variate Estimators for Rendering. (2006). Google ScholarGoogle ScholarCross RefCross Ref
  7. Peter W. Glynn and Roberto Szechtman. 2002. Some New Perspectives on the Method of Control Variates. In Monte Carlo and Quasi-Monte Carlo Methods 2000, Kai-Tai Fang, Harald Niederreiter, and Fred J. Hickernell (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 27--49.Google ScholarGoogle Scholar
  8. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  9. Jerry Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary sample space path guiding. In Eurographics Symposium on Rendering, Vol. 2018. The Eurographics Association, 73--82.Google ScholarGoogle Scholar
  10. Stefan Heinrich. 2001. Multilevel Monte Carlo Methods. In Proceedings of the Third International Conference on Large-Scale Scientific Computing-RevisedPapers (LSSC '01). Springer-Verlag, Berlin, Heidelberg, 58--67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fred J. Hickernell, Christiane Lemieux, and Art B. Owen. 2005. Control Variates for Quasi-Monte Carlo. Statist. Sci. 20, 1 (2005), 1 -- 31. Google ScholarGoogle ScholarCross RefCross Ref
  12. Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek Nowrouzezahrai, Elmar Eisemann, and Toshiya Hachisuka. 2019. A Survey on Gradient-Domain Rendering. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 455--472.Google ScholarGoogle Scholar
  13. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. 21, 3 (Sept. 2002), 531--540. Google ScholarGoogle ScholarCross RefCross Ref
  14. Alexander Keller. 2001. Hierarchical Monte Carlo Image Synthesis. Math. Comput. Simul. 55, 1--3 (Feb. 2001), 79--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomas Skrivan, Philipp Slusallek, and Jaroslav Krivanek. 2019. Optimal Multiple Importance Sampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2019) 38, 4 (July 2019), 37:1--37:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Eric P. Lafortune and Yves D. Willems. 1994. The Ambient Term as a Variance Reducing Technique for Monte Carlo Ray Tracing. 163--171.Google ScholarGoogle Scholar
  18. W. W. Loh. 1995. On the Method of Control Variates. Ph.D. Thesis. Stanford University.Google ScholarGoogle Scholar
  19. Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering Based on Weighted Local Regression. 33, 5 (Sept. 2014), 170:1--170:14. Google ScholarGoogle ScholarCross RefCross Ref
  20. Bochang Moon, Jose A. Iglesias-Guitian, Sung-Eui Yoon, and Kenny Mitchell. 2015. Adaptive Rendering with Linear Predictions. 34, 4 (July 2015), 121:1--121:11. Google ScholarGoogle ScholarCross RefCross Ref
  21. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. 36, 4 (June 2017), 91--100. Google ScholarGoogle ScholarCross RefCross Ref
  22. Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural Control Variates. ACM Trans. Graph. 39, 6, Article 243 (Nov. 2020), 19 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yuji Nakatsukasa. 2018. Approximate and integrate: Variance reduction in Monte Carlo integration via function approximation. arXiv:math.NA/1806.05492Google ScholarGoogle Scholar
  24. Harald Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM.Google ScholarGoogle Scholar
  25. Art Owen and Yi Zhou. 2000. Safe and effective importance sampling. J. Amer. Statist. Assoc. 95, 449 (2000), 135--143.Google ScholarGoogle ScholarCross RefCross Ref
  26. Art B. Owen. 2013. Monte Carlo Theory, Methods and Examples. To be published.Google ScholarGoogle Scholar
  27. Anthony Pajot, Loic Barthe, and Mathias Paulin. 2014. Globally Adaptive Control Variate for Robust Numerical Integration. SIAM Journal on Scientific Computing 36, 4 (2014), A1708--A1730. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3 ed.). San Francisco, CA, USA.Google ScholarGoogle Scholar
  29. Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. 2016. Image-Space Control Variates for Rendering. 35, 6 (Nov. 2016), 169:1--169:12. Google ScholarGoogle ScholarCross RefCross Ref
  30. Reuven Y. Rubinstein and Ruth Marcus. 1985. Efficiency of Multivariate Control Variates in Monte Carlo Simulation. (1985). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kartic Subr. 2021. Q-NET: A Network for Low-dimensional Integrals of Neural Proxies. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 61--71.Google ScholarGoogle Scholar
  32. Lloyd N. Trefethen. 2012. Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics). Society for Industrial and Applied Mathematics, USA.Google ScholarGoogle Scholar
  33. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Thesis. Stanford University, United States - California.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering, Vol. 29. 419--428. Google ScholarGoogle ScholarCross RefCross Ref
  35. Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian online regression for adaptive direct illumination sampling. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-Line Learning of Parametric Mixture Models for Light Transport Simulation. 33, 4 (Aug. 2014), 101:1--101:11. Google ScholarGoogle ScholarCross RefCross Ref
  37. Quan Zheng and Matthias Zwicker. 2019. Learning to importance sample in primary sample space. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 169--179.Google ScholarGoogle Scholar
  38. Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. 34, 2 (May 2015), 667--681. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Regression-based Monte Carlo integration

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader