skip to main content
research-article

Iterative poisson surface reconstruction (iPSR) for unoriented points

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Poisson surface reconstruction (PSR) remains a popular technique for reconstructing watertight surfaces from 3D point samples thanks to its efficiency, simplicity, and robustness. Yet, the existing PSR method and subsequent variants work only for oriented points. This paper intends to validate that an improved PSR, called iPSR, can completely eliminate the requirement of point normals and proceed in an iterative manner. In each iteration, iPSR takes as input point samples with normals directly computed from the surface obtained in the preceding iteration, and then generates a new surface with better quality. Extensive quantitative evaluation confirms that the new iPSR algorithm converges in 5--30 iterations even with randomly initialized normals. If initialized with a simple visibility based heuristic, iPSR can further reduce the number of iterations. We conduct comprehensive comparisons with PSR and other powerful implicit-function based methods. Finally, we confirm iPSR's effectiveness and scalability on the AIM@SHAPE dataset and challenging (indoor and outdoor) scenes. Code and data for this paper are at https://github.com/houfei0801/ipsr.

Skip Supplemental Material Section

Supplemental Material

3528223.3530096.mp4

presentation

128-304-supp-video.mp4

supplemental material

References

  1. Pierre Alliez, David Cohen-Steiner, Yiying Tong, and Mathieu Desbrun. 2007. Voronoi-Based Variational Reconstruction of Unoriented Point Sets. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing. 39--48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. 2001. The Power Crust. In Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications. 249--266.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel Taubin. 1999. The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on Visualization and Computer Graphics 5, 4 (oct 1999), 349--359.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Matthew Bolitho, Michael M. Kazhdan, Randal C. Burns, and Hugues Hoppe. 2009. Parallel Poisson Surface Reconstruction. In Advances in Visual Computing, 5th International Symposium, Proceedings, Part I. 678--689.Google ScholarGoogle Scholar
  5. Alexandre Boulch and Renaud Marlet. 2012. Fast and Robust Normal Estimation for Point Clouds with Sharp Features. Comput. Graph. Forum 31, 5 (aug 2012), 1765--1774.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. F. Calakli and G. Taubin. 2011. SSD: Smooth Signed Distance Surface Reconstruction. Computer Graphics Forum 30, 7 (2011), 1993--2002.Google ScholarGoogle ScholarCross RefCross Ref
  7. Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. CoRR abs/1512.03012 (2015).Google ScholarGoogle Scholar
  8. Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape Modeling. In CVPR. 5932--5941.Google ScholarGoogle Scholar
  9. Zhiqin Chen and Hao Zhang. 2021. Neural Marching Cubes. ACM Trans. Graph. 40, 6, Article 251 (dec 2021), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. 2016. A Large Dataset of Object Scans. arXiv:1602.02481 (2016).Google ScholarGoogle Scholar
  11. P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: Measuring Error on Simplified Surfaces. Computer Graphics Forum 17, 2 (1998), 167--174.Google ScholarGoogle ScholarCross RefCross Ref
  12. Tamal K. Dey and Samrat Goswami. 2003. Tight Cocone: A Water-Tight Surface Reconstructor. In Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications. 127--134.Google ScholarGoogle Scholar
  13. Jean Duchon. 1977. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive Theory of Functions of Several Variables, Walter Schempp and Karl Zeller (Eds.). 85--100.Google ScholarGoogle Scholar
  14. Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J. Mitra, and Michael Wimmer. 2020. Points2Surf Learning Implicit Surfaces from Point Clouds. In ECCV. 108--124.Google ScholarGoogle Scholar
  15. Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit Geometric Regularization for Learning Shapes. In ICML, Vol. 119. 3789--3799.Google ScholarGoogle Scholar
  16. Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry. 2018. A Papier-Mache Approach to Learning 3D Surface Generation. In CVPR. 216--224.Google ScholarGoogle Scholar
  17. Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: A Self-Prior for Deformable Meshes. ACM Trans. Graph. 39, 4, Article 126 (jul 2020), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. 1992. Surface Reconstruction from Unorganized Points. SIGGRAPH 26, 2 (jul 1992), 71--78.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. 2009. Consolidation of Unorganized Point Clouds for Surface Reconstruction. ACM Trans. Graph. 28, 5 (dec 2009), 7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hui Huang, Shihao Wu, Minglun Gong, Daniel Cohen-Or, Uri Ascher, and Hao (Richard) Zhang. 2013. Edge-Aware Point Set Resampling. ACM Trans. Graph. 32, 1, Article 9 (feb 2013), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational Implicit Point Set Surfaces. ACM Trans. Graph. 38, 4, Article 124 (July 2019), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and Thomas Funkhouser. 2020. Local Implicit Grid Representations for 3D Scenes. In CVPR. 6000--6009.Google ScholarGoogle Scholar
  23. Sagi Katz, Ayellet Tal, and Ronen Basri. 2007. Direct Visibility of Point Sets. ACM Trans. Graph. 26, 3 (jul 2007), 12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing. 61--70.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Misha Kazhdan, Ming Chuang, Szymon Rusinkiewicz, and Hugues Hoppe. 2020. Poisson Surface Reconstruction with Envelope Constraints. Computer Graphics Forum 39, 5 (2020), 173--182.Google ScholarGoogle ScholarCross RefCross Ref
  26. Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 32, 3, Article 29 (July 2013), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Roee Lazar, Nadav Dym, Yam Kushinsky, Zhiyang Huang, Tao Ju, and Yaron Lipman. 2018. Robust Optimization for Topological Surface Reconstruction. ACM Trans. Graph. 37, 4, Article 46 (jul 2018), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang, and Shiyao Jin. 2010. Robust normal estimation for point clouds with sharp features. Computers & Graphics 34, 2 (2010), 94--106.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '87). 163--169.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wenjia Lu, Zuoqiang Shi, Jian Sun, and Bin Wang. 2018. Surface Reconstruction Based on the Modified Gauss Formula. ACM Trans. Graph. 38, 1, Article 2 (dec 2018), 18 pages.Google ScholarGoogle Scholar
  31. J. Manson, G. Petrova, and S. Schaefer. 2008. Streaming Surface Reconstruction Using Wavelets. In Proceedings of the Symposium on Geometry Processing. 1411--1420.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Quentin Merigot, Maks Ovsjanikov, and Leonidas J. Guibas. 2011. Voronoi-Based Curvature and Feature Estimation from Point Clouds. IEEE Transactions on Visualization and Computer Graphics 17, 6 (jun 2011), 743--756.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space. In CVPR. 4455--4465.Google ScholarGoogle Scholar
  34. Gal Metzer, Rana Hanocka, Denis Zorin, Raja Giryes, Daniele Panozzo, and Daniel Cohen-Or. 2021. Orienting Point Clouds with Dipole Propagation. ACM Trans. Graph. 40, 4, Article 165 (July 2021), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Niloy J. Mitra and An Nguyen. 2003. Estimating Surface Normals in Noisy Point Cloud Data. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry. 322--328.Google ScholarGoogle Scholar
  36. Patrick Mullen, Fernando De Goes, Mathieu Desbrun, David Cohen-Steiner, and Pierre Alliez. 2010. Signing the Unsigned: Robust Surface Reconstruction from Raw Pointsets. Computer Graphics Forum 29, 5 (2010), 1733--1741.Google ScholarGoogle ScholarCross RefCross Ref
  37. Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. 2003. Multi-Level Partition of Unity Implicits. ACM Trans. Graph. 22, 3 (jul 2003), 463--470.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Colored Point Cloud Registration Revisited. In ICCV. 143--152.Google ScholarGoogle Scholar
  39. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In CVPR. 165--174.Google ScholarGoogle Scholar
  40. Songyou Peng, Chiyu "Max" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger. 2021. Shape As Points: A Differentiable Poisson Solver. In NeurIPS. 13032--13044.Google ScholarGoogle Scholar
  41. Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional Occupancy Networks. In ECCV. 523--540.Google ScholarGoogle Scholar
  42. Nico Schertler, Bogdan Savchynskyy, and Stefan Gumhold. 2017. Towards Globally Optimal Normal Orientations for Large Point Clouds. Comput. Graph. Forum 36, 1 (jan 2017), 197--208.Google ScholarGoogle Scholar
  43. Jun Wang, Zhouwang Yang, and Falai Chen. 2012. A Variational Model for Normal Computation of Point Clouds. Vis. Comput. 28, 2 (feb 2012), 163--174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yifan Wang, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. 2021. Iso-Points: Optimizing Neural Implicit Surfaces With Hybrid Representations. In CVPR. 374--383.Google ScholarGoogle Scholar
  45. Jane Wilhelms and Allen Van Gelder. 1992. Octrees for Faster Isosurface Generation. ACM Trans. Graph. 11, 3 (jul 1992), 201--227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Hui Xie, Jianning Wang, Jing Hua, Hong Qin, and Arie Kaufman. 2003. Piecewise C1 Continuous Surface Reconstruction of Noisy Point Clouds via Local Implicit Quadric Regression. In Proceedings of the IEEE Visualization. 91--98.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 41, Issue 4
    July 2022
    1978 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3528223
    Issue’s Table of Contents

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 22 July 2022
    Published in tog Volume 41, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader