Abstract
Vector clip-art images consist of regions bounded by a network of vector curves. Users often wish to reshape, or rescale, existing clip-art images by changing the locations, proportions, or scales of different image elements. When reshaping images depicting synthetic content they seek to preserve global and local structures. These structures are best preserved when the gradient of the mapping between the original and the reshaped curve networks is locally as close as possible to a uniform scale; mappings that satisfy this property maximally preserve the input curve orientations and minimally change the shape of the input's geometric details, while allowing changes in the relative scales of the different features. The expectation of approximate scale uniformity is local; while reshaping operations are typically expected to change the relative proportions of a subset of network regions, users expect the change to be minimal away from the directly impacted regions and expect such changes to be gradual and distributed as evenly as possible. Unfortunately, existing methods for editing 2D curve networks do not satisfy these criteria. We propose a targeted As-Locally-Uniform-as-Possible (ALUP) vector clip-art reshaping method that satisfies the properties above. We formulate the computation of the desired output network as the solution of a constrained variational optimization problem. We effectively compute the desired solution by casting this continuous problem as a minimization of a non-linear discrete energy function, and obtain the desired minimizer by using a custom iterative solver. We validate our method via perceptual studies comparing our results to those created via algorithmic alternatives and manually generated ones. Participants preferred our results over the closest alternative by a ratio of 6 to 1.
Supplemental Material
- Adobe Inc. 2019. Adobe Illustrator. https://adobe.com/products/illustratorGoogle Scholar
- Marc Alexa, Daniel Cohen-Or, and David Levin. 2000. As-Rigid-as-Possible Shape Interpolation. In Proc. SIGGRAPH 2000. ACM Press/Addison-Wesley Publishing Co., 157--164.Google Scholar
Digital Library
- A. Artusi, F. Banterle, T.O. Aydın, D. Panozzo, and O. Sorkine-Hornung. 2016. Image Content Retargeting: Maintaining Color, Tone, and Spatial Consistency. CRC Press.Google Scholar
- Shai Avidan and Ariel Shamir. 2007. Seam Carving for Content-Aware Image Resizing (SIGGRAPH '07). Association for Computing Machinery.Google Scholar
- Gilbert Louis Bernstein and Wilmot Li. 2015. Lillicon: Using Transient Widgets to Create Scale Variations of Icons. ACM Trans. Graph. 34, 4 (2015).Google Scholar
Digital Library
- Marcio Cabral, Sylvain Lefebvre, Carsten Dachsbacher, and George Drettakis. 2009. Structure Preserving Reshape for Textured Architectural Scenes. Computer Graphics Forum (Proceedings of the Eurographics conference) (2009).Google Scholar
- Donghyeon Cho, Jinsun Park, Tae-Hyun Oh, Yu-Wing Tai, and In So Kweon. 2017. Weakly-and self-supervised learning for content-aware deep image retargeting. In Proceedings of the IEEE International Conference on Computer Vision. 4558--4567.Google Scholar
Cross Ref
- Ravi Chugh, Jacob Albers, and Mitchell Spradlin. 2015. Program Synthesis for Direct Manipulation Interfaces. CoRR (2015).Google Scholar
- Daniel Cohen-Or, Chen Greif, Tao Ju, Niloy J. Mitra, Ariel Shamir, Olga Sorkine-Hornung, and Hao (Richard) Zhang. 2015. A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing (1st ed.). A. K. Peters, Ltd., USA.Google Scholar
- Pierre Dragicevic, Stéphane Chatty, David Thevenin, and Jean-Luc Vinot. 2005. Artistic resizing: A technique for rich scale-sensitive vector graphics. ACM SIGGRAPH 2006, 201--210.Google Scholar
Digital Library
- Michael S Floater. 2003. Mean value coordinates. Computer aided geometric design 20, 1 (2003), 19--27.Google Scholar
Digital Library
- Ran Gal, Olga Sorkine, and Daniel Cohen-Or. 2006. Feature-Aware Texturing. Rendering Techniques 11, 297--303.Google Scholar
- Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. 2009. IWIRES: An Analyze-and-Edit Approach to Shape Manipulation. In Proc. SIGGRAPH 2009. ACM.Google Scholar
Digital Library
- Michael Gleicher. 1992. Briar: A Constraint-Based Drawing Program. In Proc. SIGCHI 1992. Association for Computing Machinery.Google Scholar
Digital Library
- Josef Hoschek and Dieter Lasser. 1993. Fundamentals of Computer Aided Geometric Design. A K Peters/CRC Press.Google Scholar
- S. Hsu, Irene H. H. Lee, and N. Wiseman. 1993. Skeletal strokes. In UIST '93.Google Scholar
- Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-Rigid-as-Possible Shape Manipulation. ACM Trans. Graph. 24, 3 (2005).Google Scholar
Digital Library
- Inkscape. 2003. Inkscape. https://inkscape.orgGoogle Scholar
- Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4 (2012).Google Scholar
Digital Library
- Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-Time Deformation. In Proc. SIGGRAPH 2011. Association for Computing Machinery.Google Scholar
Digital Library
- Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic coordinates for character articulation. ACM Transactions on Graphics (TOG) 26, 3 (2007), 71--es.Google Scholar
Digital Library
- Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed triangular meshes. In ACM Siggraph 2005 Papers. 561--566.Google Scholar
- Vladislav Kraevoy, Alla Sheffer, and Craig Gotsman. 2003. Matchmaker: constructing constrained texture maps. ACM Transactions on Graphics (TOG) 22, 3 (2003), 326--333.Google Scholar
Digital Library
- Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, and Daniel Cohen-Or. 2008. Non-Homogeneous Resizing of Complex Models. ACM Transactions on Graphics (TOG) 27, 5 (2008), 1--9.Google Scholar
Digital Library
- Sylvain Lefebvre, Samuel Hornus, and Anass Lasram. 2010. By-example Synthesis of Architectural Textures. ACM Trans. Graph (Proc. SIGGRAPH) (2010).Google Scholar
- Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. 2020. Differentiable Vector Graphics Rasterization for Editing and Learning. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--15.Google Scholar
Digital Library
- Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green coordinates. ACM Trans. Graph. 27, 3 (2008), 1--10.Google Scholar
Digital Library
- Songrun Liu, Alec Jacobson, and Yotam Gingold. 2014. Skinning Cubic BéZier Splines and Catmull-Clark Subdivision Surfaces. ACM Trans. Graph. 33, 6 (2014).Google Scholar
Digital Library
- Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy J Mitra. 2009. Abstraction of man-made shapes. In ACM SIGGRAPH Asia 2009 papers. 1--10.Google Scholar
- Seung-Hun Nam, Wonhyuk Ahn, Seung-Min Mun, Jinseok Park, Dongkyu Kim, In-Jae Yu, and Heung-Kyu Lee. 2019. Content-aware image resizing detection using deep neural network. In 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 106--110.Google Scholar
Cross Ref
- Daniele Panozzo, Philippe Block, and Olga Sorkine-Hornung. 2013. Designing Unreinforced Masonry Models. ACM Trans. Graph. 32, 4, Article 91 (2013), 12 pages.Google Scholar
Digital Library
- Daniele Panozzo, Ofir Weber, and Olga Sorkine. 2012. Robust image retargeting via axis-aligned deformation. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 229--236.Google Scholar
- Vidya Setlur, Tom Lechner, Marc Nienhaus, and Bruce Gooch. 2007. Retargeting Images and Video for Preserving Information Saliency. IEEE Computer Graphics and Applications 27, 5 (2007), 80--88.Google Scholar
Digital Library
- Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Workshop on applied computational geometry. Springer, 203--222.Google Scholar
Cross Ref
- Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. 2008. Summarizing visual data using bidirectional similarity. In 2008 IEEE CVPR. IEEE, 1--8.Google Scholar
- Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011. As-Killing-As-Possible Vector Fields for Planar Deformation. Computer Graph. Forum 30 (2011), 1543--1552.Google Scholar
Cross Ref
- Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Proc. EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing. 109--116.Google Scholar
- Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and Hans-Peter Seidel. 2004. Laplacian Surface Editing. In Proc. EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing. ACM Press, 179--188.Google Scholar
Digital Library
- Ivan E. Sutherland. 1964. Sketchpad: a Man-Machine Graphical Communication System. Simulation 2, 5, R-3.Google Scholar
- Yu-Shuen Wang, Chiew-Lan Tai, Olga Sorkine, and Tong-Yee Lee. 2008. Optimized Scale-and-Stretch for Image Resizing. ACM Trans. Graph. (2008).Google Scholar
- Ofir Weber and Craig Gotsman. 2010. Controllable Conformal Maps for Shape Deformation and Interpolation. ACM Trans. Graph. 29, 4, Article 78 (2010).Google Scholar
Digital Library
- Lior Wolf, Moshe Guttmann, and Daniel Cohen-Or. 2007. Non-homogeneous content-driven video-retargeting. In Proc. IEEE 11th International Conference on Computer Vision. IEEE, 1--6.Google Scholar
Cross Ref
- Chunxia Xiao, Liqiang Jin, Yongwei Nie, Renfang Wang, Hanqiu Sun, and Kwan-Liu Ma. 2014. Content-aware model resizing with symmetry-preservation. The Visual Computer 31 (2014), 155--167.Google Scholar
Digital Library
- Yu-Jie Yuan, Yu-Kun Lai, Tong Wu, Lin Gao, and Ligang Liu. 2021. A Revisit of Shape Editing Techniques: from the Geometric to the Neural Viewpoint. CoRR (2021). https://arxiv.org/abs/2103.01694Google Scholar
- Cem Yuksel. 2020. A Class of C2 Interpolating Splines. ACM Transactions on Graphics 39, 5, Article 160 (jul 2020).Google Scholar
Digital Library
- Guo-Xin Zhang, Ming-Ming Cheng, Shi-Min Hu, and Ralph R. Martin. 2009. A Shape-Preserving Approach to Image Resizing. Computer Graphics Forum (2009).Google Scholar
Index Terms
As-locally-uniform-as-possible reshaping of vector clip-art
Recommendations
Variational harmonic maps for space deformation
SIGGRAPH '09: ACM SIGGRAPH 2009 papersA space deformation is a mapping from a source region to a target region within Euclidean space, which best satisfies some userspecified constraints. It can be used to deform shapes embedded in the ambient space and represented in various forms -- ...
Geometric matching for clip-art drawing retrieval
Currently, there are large collections of clip-art vector drawings from which users can select the desired figures to insert in their documents. However, to locate a particular drawing among thousands is not easy. Although there are some solutions for ...
Variational harmonic maps for space deformation
A space deformation is a mapping from a source region to a target region within Euclidean space, which best satisfies some userspecified constraints. It can be used to deform shapes embedded in the ambient space and represented in various forms -- ...





Comments