skip to main content
research-article

Filament based plasma

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Simulation of stellar atmospheres, such as that of our own sun, is a common task in CGI for scientific visualization, movies and games. A fibrous volumetric texture is a visually dominant feature of the solar corona---the plasma that extends from the solar surface into space. These coronal fibers can be modeled as magnetic filaments whose shape is governed by the magnetohydrostatic equation. The magnetic filaments provide a Lagrangian curve representation and their initial configuration can be prescribed by an artist or generated from magnetic flux given as a scalar texture on the sun's surface. Subsequently, the shape of the filaments is determined based on a variational formulation. The output is a visual rendering of the whole sun. We demonstrate the fidelity of our method by comparing the resulting renderings with actual images of our sun's corona.

Skip Supplemental Material Section

Supplemental Material

3528223.3530102.mp4

presentation

153-329-supp-video.mp4

supplemental material

References

  1. M. D. Altschuler and G. Newkirk. 1969. Magnetic Fields and the Structure of the Solar Corona. Sol. Phys. 9, 1 (1969), 131--149.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Angelidis and F. Neyret. 2005. Simulation of Smoke based on Vortex Filament Primitives. In Proc. Symp. Comp. Anim. ACM, New York, NY, USA, 87--96.Google ScholarGoogle Scholar
  3. B. Angles, D. Rebain, M. Macklin, B. Wyvill, L. Barthe, J. P. Lewis, J. von der Pahlen, S. Izadi, J. Valentin, S. Bouaziz, and A. Tagliasacchi. 2019. VIPER: Volume Invariant Position-Based Elastic Rods. Proc. ACM Comput. Graph. Interact. Tech. 2, 2 (2019), 19:1--19:26.Google ScholarGoogle Scholar
  4. M. J. Aschwanden, K. Reardon, and D. B. Jess. 2016. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data. Astrophys. J. 826, 1 (2016), 61.Google ScholarGoogle ScholarCross RefCross Ref
  5. P. Boerner, C. Edwards, J. Lemen, A. Rausch, C. Schrijver, R. Shine, L. Shing, R. Stern, T. Tarbell, C. J. Wolfson, et al. 2012. Initial Calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 1--2 (2012), 41--66.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. Borkiewicz, A. J. Christensen, D. Berry, C. Fluke, G. Shirah, and K. Elkins. 2019. Cinematic Scientific Visualization: The Art of Communicating Science. In SIGGRAPH Asia 2019 Courses. ACM, New York, NY, USA, Article 107, 313 pages.Google ScholarGoogle Scholar
  7. CADENS. 2015. Solar Superstorms. Centrality of Advanced Digitally ENabled Science.Google ScholarGoogle Scholar
  8. R. Chodura and A. Schlüter. 1981. A 3D code for MHD Equilibrium and Stability. J. Comput. Phys. 41, 1 (1981), 68--88.Google ScholarGoogle ScholarCross RefCross Ref
  9. C. E. DeForest and C. C. Kankelborg. 2007. Fluxon Modeling of Low-Beta Plasmas. J. Atmos. Sol.-Terr. Phys. 69, 1 (2007), 116--128.Google ScholarGoogle ScholarCross RefCross Ref
  10. V. Garcia, E. Debreuve, and M. Barlaud. 2008. Fast k Nearest Neighbor Search using GPU. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, Anchorage, AK, USA, 1--6.Google ScholarGoogle Scholar
  11. F. A. Gent, V. Fedun, S. J. Mumford, and R. Erdélyi. 2013. Magnetohydrostatic Equilibrium - I. Three-Dimensional Open Magnetic Flux Tube in the Stratified Solar Atmosphere. Mon. Notices Royal Astron. Soc. 435, 1 (2013), 689--697.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Gómez, J. Blinn, D. Em, and S. Rueff. 2017. History of the JPL Computer Graphics Lab. ACM SIGGRAPH 2017 Panel.Google ScholarGoogle Scholar
  13. H. Grad and H. Rubin. 1958. Hydromagnetic Equilibria and Force-Free Fields. J. nucl. Energy 7, 3--4 (1958), 284--285.Google ScholarGoogle Scholar
  14. J. Gross, M. Köster, and A. Krüger. 2019. Fast and Efficient Nearest Neighbor Search for Particle Simulations. In Computer Graphics and Visual Computing (CGVC). The Eurographics Association, 55--63.Google ScholarGoogle Scholar
  15. S. Hadap and N. Magnenat-Thalmann. 2001. Modeling Dynamic Hair as a Continuum. Comp. Graph. Forum 20, 3 (2001), 329--338.Google ScholarGoogle ScholarCross RefCross Ref
  16. D. Hahn and C. Wojtan. 2015. High-Resolution Brittle Fracture Simulation with Boundary Elements. ACM Trans. Graph. 34, 4 (2015), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Inhester and T. Wiegelmann. 2006. Nonlinear Force-Free Magnetic Field Extrapolations: Comparison of the Grad Rubin and Wheatland Sturrock Roumeliotis Algorithm. Sol. Phys. 235, 1 (2006), 201--221.Google ScholarGoogle ScholarCross RefCross Ref
  18. Å. M. Janse, B. C. Low, and E. N. Parker. 2010. Topological Complexity and Tangential Discontinuity in Magnetic Fields. Phys. Plasmas. 17, 9 (2010), 092901.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Jonker and A. Volgenant. 1987. A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems. Comp. 38, 4 (1987), 325--340.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Kippenhahn and A. Schlüter. 1957. Eine Theorie der Solaren Filamente. Mit 7 Textabbildungen. Z. Astrophys. 43 (1957), 36--62.Google ScholarGoogle Scholar
  21. R. Lionello, J. A. Linker, and Z. Mikić. 2008. Multispectral Emission of the Sun During the First Whole Sun Month: Magnetohydrodynamic Simulations. Astrophys. J. 690, 1 (2008), 902.Google ScholarGoogle ScholarCross RefCross Ref
  22. B. C. Low. 1982. Magnetostatic atmospheres with variations in three dimensions. Astrophys. J. 263 (1982), 952--969.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. M. Machado, F. Sadlo, T. Müller, D. Müller, and T. Ertl. 2012. Visualizing Solar Dynamics Data. In Vision, Modeling and Visualization. The Eurographics Association, 95--102.Google ScholarGoogle Scholar
  24. H. Moradi, C. Baldner, A. C. Birch, D. C. Braun, R. H. Cameron, T. L. Duvall, L. Gizon, D. Haber, S. M. Hanasoge, B. W. Hindman, J. Jackiewicz, E. Khomenko, R. Komm, P. Rajaguru, M. Rempel, M. Roth, R. Schlichenmaier, H. Schunker, H. C. Spruit, K. G. Strassmeier, M. J. Thompson, and S. Zharkov. 2010. Modeling the Subsurface Structure of Sunspots. Sol. Phys. 267, 1 (2010), 1--62.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. S. Nabizadeh, A. Chern, and R. Ramamoorthi. 2021. Kelvin Transformations for Simulations on Infinite Domains. ACM Trans. Graph. 40, 4 (2021), 97:1--97:15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. P. Naiman, K. Borkiewicz, and A. J. Christensen. 2017. Houdini for Astrophysical Visualization. Publ. Astron. Soc. Pac. 129, 975 (2017), 058008.Google ScholarGoogle ScholarCross RefCross Ref
  27. NASA Scientific Visualization Studio. 2018. The Dynamic Solar Magnetic Field with Introduction.Google ScholarGoogle Scholar
  28. NASA Solar Dynamics Observatory. 2022. NASA AIA/HMI Data.Google ScholarGoogle Scholar
  29. M. Negri. 2021. A Quasi-Static Model for Craquelure Patterns. In Mathematical Modeling in Cultural Heritage. Springer, Cham, 147--164.Google ScholarGoogle Scholar
  30. M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2019. On Bubble Rings and Ink Chandeliers. ACM Trans. Graph. 38, 4 (2019), 129:1--129:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. E. N. Parker. 1994. Spontaneous Current Sheets in Magnetic Fields: With Applications to Stellar X-Rays. Vol. 1. Ox. U. P., New York, NY.Google ScholarGoogle Scholar
  32. Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu. 2018. Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM Trans. Graph. 37, 4 (2018), 42:1--42:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. H. Peter, S. Bingert, and S. Kamio. 2012. Catastrophic Cooling and Cessation of Heating in the Solar Corona. Astron. Astrophys. 537 (2012), A152.Google ScholarGoogle ScholarCross RefCross Ref
  34. E. R. Priest. 2014. Magnetohydrodynamics of the Sun. Cam. U. P.Google ScholarGoogle Scholar
  35. E. R. Priest. 2019. Magnetohydrodynamics and Solar Dynamo Action. In The Sun as a Guide to Stellar Physics. Elsevier, 239--266.Google ScholarGoogle Scholar
  36. C. Prior and A. R. Yeates. 2016a. Twisted Versus Braided Magnetic Flux Ropes in Coronal Geometry - I. Construction and Relaxation. Astron. Astrophys. 587 (2016), 15.Google ScholarGoogle Scholar
  37. C. Prior and A. R. Yeates. 2016b. Twisted Versus Braided Magnetic Flux Ropes in Coronal Geometry - II. Comparative Behaviour. Astron. Astrophys. 591 (2016), 20.Google ScholarGoogle Scholar
  38. L. A. Rachmeler, C. E. DeForest, and C. C. Kankelborg. 2009. Reconnectionless CME Eruption: Putting the Aly-Sturrock Conjecture to Rest. Astrophys. J. 693, 2 (2009), 1431--1436.Google ScholarGoogle ScholarCross RefCross Ref
  39. F. Reale. 2014. Coronal Loops: Observations and Modeling of Confined Plasma. Living Rev. Sol. Phys. 11, 1 (2014), 1--94.Google ScholarGoogle ScholarCross RefCross Ref
  40. F. Reale and G. Peres. 1999. TRACE-Derived Temperature and Emission Measure Profiles along Long-Lived Coronal Loops: The Role of Filamentation. Astrophys. J. Lett. 528, 1 (1999), L45.Google ScholarGoogle ScholarCross RefCross Ref
  41. M. Reddiger and B. Poirier. 2020. On the Differentiation Lemma and the Reynolds Transport Theorem for Manifolds with Corners. arXiv:1906.03330 [math-ph]Google ScholarGoogle Scholar
  42. R. Rosner, W. H. Tucker, and G. S. Vaiana. 1978. Dynamics of the Quiescent Solar Corona. Astrophys. J. 220 (1978), 643--645.Google ScholarGoogle ScholarCross RefCross Ref
  43. T. Sakurai. 1982. Green's Function Methods for Potential Magnetic Fields. Sol. Phys. 76, 2 (1982), 301--321.Google ScholarGoogle ScholarCross RefCross Ref
  44. C. J. Schrijver and M. L. DeRosa. 2003. Photospheric and Heliospheric Magnetic Fields. Solar Physics 212, 1 (2003), 165--200.Google ScholarGoogle ScholarCross RefCross Ref
  45. C. J. Schrijver, A. W. Sandman, M. J. Aschwanden, and M. L. De Rosa. 2005. Coronal Heating and the Appearance of Solar and Stellar Coronae. In 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, Vol. 560. European Space Agency, 65.Google ScholarGoogle Scholar
  46. N. R. Sheeley, C. R. DeVore, and J. P. Boris. 1985. Simulations of the Mean Solar Magnetic Field During Sunspot Cycle 21. Sol. Phys. 98, 2 (1985), 219--239.Google ScholarGoogle ScholarCross RefCross Ref
  47. D. Stansby, A. R. Yeates, and S. T. Badman. 2020. pfsspy: A Python Package for Potential Field Source Surface Modelling. J. Open Source Softw. 5, 54 (2020), 2732.Google ScholarGoogle ScholarCross RefCross Ref
  48. V. S. Titov, C. Downs, Z. Mikić, T. Török, J. A. Linker, and R. M. Caplan. 2018. Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes. Astrophys. J. Lett. 852, 2 (2018), L21.Google ScholarGoogle ScholarCross RefCross Ref
  49. R. Toader and C. Zanini. 2009. An Artificial Viscosity Approach to Quasistatic Crack Growth. Bolletino dell Unione Mat. Ital. 2, 1 (2009), 1--35.Google ScholarGoogle Scholar
  50. H. P. Warren, N. A. Crump, I. Ugarte-Urra, X. Sun, M. J. Aschwanden, and T. Wiegelmann. 2018. Toward a Quantitative Comparison of Magnetic Field Extrapolations and Observed Coronal Loops. Astrophys. J. 860, 1 (2018), 46.Google ScholarGoogle ScholarCross RefCross Ref
  51. S. Weißmann and U. Pinkall. 2010. Filament-based Smoke with Vortex Shedding and Variational Reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. T. Wiegelmann and S. K. Solanki. 2004a. Similarities and Differences between Coronal Holes and the Quiet Sun: Are Loop Statistics the Key? Sol. Phys. 225, 2 (2004), 227--247.Google ScholarGoogle ScholarCross RefCross Ref
  53. T. Wiegelmann and S. K. Solanki. 2004b. Why Are Coronal Holes Indistinguishable from the Quiet Sun in Transition Region Radiation?. In SOHO 15 Coronal Heating, Vol. 575. European Space Agency, 35.Google ScholarGoogle Scholar
  54. T. Williams, R. W. Walsh, A. R. Winebarger, D. H. Brooks, J. W. Cirtain, B. De Pontieu, L. Golub, K. Kobayashi, D. E. McKenzie, R. J. Morton, H. Peter, L. A. Rachmeler, S. L. Savage, P. Testa, S. K. Tiwari, H. P. Warren, and B. J. Watkinson. 2020. Is the High-Resolution Coronal Imager Resolving Coronal Strands? Results from AR 12712. Astrophys. J. 892, 2 (2020), 134.Google ScholarGoogle ScholarCross RefCross Ref
  55. A. R. Winebarger, H. P. Warren, and D. A. Falconer. 2008. Modeling X-Ray Loops and EUV "Moss" in an Active Region Core. Astrophys. J. 676, 1 (2008), 672.Google ScholarGoogle ScholarCross RefCross Ref
  56. A. R. Yeates. 2020. How Good is the Bipolar Approximation of Active Regions for Surface Flux Transport? Sol. Phys. 295, 9 (2020), 119.Google ScholarGoogle ScholarCross RefCross Ref
  57. A. R. Yeates, T. Amari, I. Contopoulos, X. Feng, D. H. Mackay, Z. Mikić, T. Wiegelmann, J. Hutton, C. A. Lowder, H. Morgan, et al. 2018. Global Non-Potential Magnetic Models of the Solar Corona During the March 2015 Eclipse. Space Sci. Rev. 214, 5 (2018), 99.Google ScholarGoogle Scholar
  58. C. Yu, H. Schumacher, and K. Crane. 2021. Repulsive Curves. ACM Trans. Graph. 40, 2 (2021), 268:1--268:19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. J. Zhuleku, J. Warnecke, and H. Peter. 2020. Stellar Coronal X-ray Emission and Surface Magnetic Flux. Astron. Astrophys. 640 (2020), A119.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Filament based plasma

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 41, Issue 4
            July 2022
            1978 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/3528223
            Issue’s Table of Contents

            Copyright © 2022 ACM

            Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 22 July 2022
            Published in tog Volume 41, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader