skip to main content
research-article

Position-free multiple-bounce computations for smith microfacet BSDFs

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Bidirectional Scattering Distribution Functions (BSDFs) encode how a material reflects or transmits the incoming light. The most commonly used model is the microfacet BSDF. It computes the material response from the microgeometry of the surface assuming a single bounce on specular microfacets. The original model ignores multiple bounces on the microgeometry, resulting in an energy loss, especially for rough materials. In this paper, we present a new method to compute the multiple bounces inside the microgeometry, eliminating this energy loss. Our method relies on a position-free formulation of multiple bounces inside the microgeometry. We use an explicit mathematical definition of the path space that describes single and multiple bounces in a uniform way. We then study the behavior of light on the different vertices and segments in the path space, leading to a reciprocal multiple-bounce description of BSDFs. Furthermore, we present practical, unbiased Monte Carlo estimators to compute multiple scattering. Our method is less noisy than existing algorithms for computing multiple scattering. It is almost noise-free with a very-low sampling rate, from 2 to 4 samples per pixel (spp).

Skip Supplemental Material Section

Supplemental Material

3528223.3530112.mp4

presentation

References

  1. James Arvo and David Kirk. 1990. Particle Transport and Image Synthesis. SIGGRAPH Comput. Graph. 24, 4 (sep 1990), 63--66.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Michael Ashikhmin and Simon Premože. 2007. Distribution-Based BRDFs. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.8243&rep=rep1&type=pdf.Google ScholarGoogle Scholar
  3. Mahdi M. Bagher, Cyril Soler, and Nicolas Holzschuch. 2012. Accurate fitting of measured reflectances using a Shifted Gamma micro-facet distribution. Computer Graphics Forum 31, 4 (2012), 1509--1518.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Beckmann and A. Spizzichino. 1963. The scattering of electromagnetic waves from rough surfaces. Pergamon Press.Google ScholarGoogle Scholar
  5. Robert L. Cook and Kenneth E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graph. 1, 1 (Jan. 1982), 7--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Zhao Dong, Bruce Walter, Steve Marschner, and Donald P. Greenberg. 2016. Predicting Appearance from Measured Microgeometry of Metal Surfaces. ACM Trans. Graph. 35, 1, Article 9 (dec 2016), 13 pages.Google ScholarGoogle Scholar
  7. Jonathan Dupuy, Eric Heitz, and Eugene d'Eon. 2016. Additional Progress Towards the Unification of Microfacet and Microflake Theories. In Eurographics Symposium on Rendering - EI & I. The Eurographics Association, 55--63.Google ScholarGoogle Scholar
  8. Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, and Victor Ostromoukhov. 2015. Extracting Microfacet-based BRDF Parameters from Arbitrary Materials with Power Iterations. Computer Graphics Forum 34, 4 (2015), 21--30.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. V. Falster, A. Jarabo, and J. R. Frisvad. 2020. Computing the Bidirectional Scattering of a Microstructure Using Scalar Diffraction Theory and Path Tracing. Computer Graphics Forum 39, 7 (2020), 231--242.Google ScholarGoogle ScholarCross RefCross Ref
  10. Luis E. Gamboa, Adrien Gruson, and Derek Nowrouzezahrai. 2020. An Efficient Transport Estimator for Complex Layered Materials. Computer Graphics Forum 39, 2 (2020), 363--371.Google ScholarGoogle ScholarCross RefCross Ref
  11. Yu Guo, Miloš Hašan, and Shuang Zhao. 2018. Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs. ACM Trans. Graph. 37, 6, Article 279 (Dec. 2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Eric Heitz. 2014. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of Computer Graphics Techniques (JCGT) 3, 2 (June 2014), 48--107.Google ScholarGoogle Scholar
  13. Eric Heitz and Eugene d'Eon. 2014. Importance Sampling Microfacet-Based BSDFs using the Distribution of Visible Normals. Computer Graphics Forum 33, 4 (2014), 103--112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eric Heitz and Jonathan Dupuy. 2015. Implementing a Simple Anisotropic Rough Diffuse Material with Stochastic Evaluation. https://drive.google.com/file/d/0BzvWIdpUpRx_M3ZmakxHYXZWaUk/view.Google ScholarGoogle Scholar
  15. Eric Heitz, Johannes Hanika, Eugene d'Eon, and Carsten Dachsbacher. 2016. Multiple-Scattering Microfacet BSDFs with the Smith Model. ACM Trans. Graph. 35, 4, Article 58 (July 2016), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  17. Wenzel Jakob, Eugene d'Eon, Otto Jakob, and Steve Marschner. 2014. A Comprehensive Framework for Rendering Layered Materials. ACM Trans. Graph. 33, 4, Article 118 (July 2014), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Csaba Kelemen and László Szirmay-Kalos. 2001. A Microfacet Based Coupled Specular-Matte BRDF Model with Importance Sampling. In Eurographics 2001 - Short Presentations. The Eurographics Association.Google ScholarGoogle Scholar
  19. Christopher Kulla and Alejandro Conty. 2017. Physically Based Shading in Theory and Practice - Revisiting Physically Based Shading at Imageworks. http://blog.selfshadow.com/publications/s2017-shading-course/.Google ScholarGoogle Scholar
  20. Joo Lee, Adrián Jarabo, Daniel Jeon, Diego Gutiérrez, and Min Kim. 2018. Practical multiple scattering for rough surfaces. ACM Trans. Graph. 37, Article 175 (Dec. 2018), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Daniel Meneveaux, Benjamin Bringier, Emmanuelle Tauzia, Mickaël Ribardière, and Lionel Simonot. 2018. Rendering Rough Opaque Materials with Interfaced Lambertian Microfacets. IEEE Transactions on Visualization and Computer Graphics 24, 3 (2018), 1368--1380.Google ScholarGoogle ScholarCross RefCross Ref
  22. Nicolas Pinel, Bourlier Christophe, and J. Saillard. 2005. Energy conservation of the scattering from one-dimensional random rough surfaces in the high-frequency limit. Optics letters 30 (09 2005), 2007--9. Google ScholarGoogle ScholarCross RefCross Ref
  23. Mickaël Ribardière, Benjamin Bringier, Daniel Meneveaux, and Lionel Simonot. 2017. STD: Student's t-Distribution of Slopes for Microfacet Based BSDFs. Computer Graphics Forum 36, 2 (2017), 421--429.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mickaël Ribardière, Benjamin Bringier, Lionel Simonot, and Daniel Meneveaux. 2019. Microfacet BSDFs Generated from NDFs and Explicit Microgeometry. ACM Trans. Graph. 38, 5, Article 143 (June 2019), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Vincent Ross, Denis Dion, and Guy Potvin. 2005. Detailed analytical approach to the Gaussian surface bidirectional reflectance distribution function specular component applied to the sea surface. J. Opt. Soc. Am. A 22, 11 (Nov. 2005), 2442--2453.Google ScholarGoogle ScholarCross RefCross Ref
  26. Vincent Schüssler, Eric Heitz, Johannes Hanika, and Carsten Dachsbacher. 2017. Microfacet-Based Normal Mapping for Robust Monte Carlo Path Tracing. ACM Trans. Graph. 36, 6, Article 205 (2017), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. Smith. 1967. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation 15, 5 (1967), 668--671.Google ScholarGoogle ScholarCross RefCross Ref
  28. Jos Stam. 2001. An Illumination Model for a Skin Layer Bounded by Rough Surfaces. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques. Springer-Verlag, Berlin, Heidelberg, 39--52.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kenneth Torrance and E. Sparrow. 1967. Theory for Off-Specular Reflection From Roughened Surfaces. Journal of The Optical Society of America 57 (Sept. 1967).Google ScholarGoogle ScholarCross RefCross Ref
  30. T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough surface for ray reflection. Journal of The Optical Society of America 65, 5 (May 1975), 531--536.Google ScholarGoogle ScholarCross RefCross Ref
  31. Emmanuel Turquin. 2019. Practical multiple scattering compensation for microfacet models. https://blog.selfshadow.com/publications/turquin/ms_comp_final.pdf.Google ScholarGoogle Scholar
  32. Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet Models for Refraction through Rough Surfaces. In Rendering Techniques (proc. EGSR 2007). The Eurographics Association, 195--206.Google ScholarGoogle Scholar
  33. Stephen H. Westin, James R. Arvo, and Kenneth E. Torrance. 1992. Predicting Reflectance Functions from Complex Surfaces. In Proceedings of SIGGRAPH '92 (SIGGRAPH '92). Association for Computing Machinery, 255--264.Google ScholarGoogle Scholar
  34. Mengqi (Mandy) Xia, Bruce Walter, Christophe Hery, and Steve Marschner. 2020. Gaussian Product Sampling for Rendering Layered Materials. Computer Graphics Forum 39, 1 (2020), 420--435.Google ScholarGoogle ScholarCross RefCross Ref
  35. Feng Xie and Pat Hanrahan. 2018. Multiple Scattering from Distributions of Specular V-Grooves. ACM Trans. Graph. 37, 6, Article 276 (2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Feng Xie, Anton Kaplanyan, Warren Hunt, and Pat Hanrahan. 2019. Multiple Scattering Using Machine Learning. In ACM SIGGRAPH 2019 Talks. Article 70, 2 pages.Google ScholarGoogle Scholar

Index Terms

  1. Position-free multiple-bounce computations for smith microfacet BSDFs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader