skip to main content
research-article
Open Access

stelaCSF: a unified model of contrast sensitivity as the function of spatio-temporal frequency, eccentricity, luminance and area

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

A contrast sensitivity function, or CSF, is a cornerstone of many visual models. It explains whether a contrast pattern is visible to the human eye. The existing CSFs typically account for a subset of relevant dimensions describing a stimulus, limiting the use of such functions to either static or foveal content but not both. In this paper, we propose a unified CSF, stelaCSF, which accounts for all major dimensions of the stimulus: spatial and temporal frequency, eccentricity, luminance, and area. To model the 5-dimensional space of contrast sensitivity, we combined data from 11 papers, each of which studied a subset of this space. While previously proposed CSFs were fitted to a single dataset, stelaCSF can predict the data from all these studies using the same set of parameters. The predictions are accurate in the entire domain, including low frequencies. In addition, stelaCSF relies on psychophysical models and experimental evidence to explain the major interactions between the 5 dimensions of the CSF. We demonstrate the utility of our new CSF in a flicker detection metric and in foveated rendering.

Skip Supplemental Material Section

Supplemental Material

3528223.3530115.mp4

References

  1. Albert Ahumada and Heidi A. Peterson. 1992. Luminance-model-based DCT quantization for color image compression. In SPIE 1666, Human vision, visual processing, and digital display III.Google ScholarGoogle Scholar
  2. Albert Ahumada, Jihyun Yeonan-Kim, and Andrew B. Watson. 2018. A Dual Channel Spatial-Temporal Detection Model. Electronic Imaging 2018, 14 (2018), 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  3. Hirotugu Akaike. 1974. A new look at the statistical model identification. IEEE transactions on automatic control 19, 6 (1974), 716--723.Google ScholarGoogle ScholarCross RefCross Ref
  4. S. J. Anderson, K. T. Mullen, and R. F. Hess. 1991. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. The Journal of Physiology 442 (1991), 47--64.Google ScholarGoogle ScholarCross RefCross Ref
  5. Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle Åström, and Mark D Fairchild. 2020. FLIP: A Difference Evaluator for Alternating Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2 (2020), 15--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Peter G. J. Barten. 1999. Contrast sensitivity of the human eye and its effects on image quality. SPIE Press.Google ScholarGoogle Scholar
  7. Peter G. J. Barten. 2003. Formula for the contrast sensitivity of the human eye. In Proc. SPIE 5294, Image Quality and System Performance. 231--238.Google ScholarGoogle Scholar
  8. Christina A. Burbeck and D. H. Kelly. 1980. Spatiotemporal characteristics of visual mechanisms: excitatory-inhibitory model. Journal of the Optical Society of America 70, 9 (September 1980), 1121--1126.Google ScholarGoogle ScholarCross RefCross Ref
  9. Fergus W Campbell and John G Robson. 1968. Application of Fourier analysis to the visibility of gratings. The Journal of physiology 197, 3 (1968), 551--566.Google ScholarGoogle ScholarCross RefCross Ref
  10. Scott J Daly. 1992. Visible differences predictor: an algorithm for the assessment of image fidelity. In SPIE 1666, Human Vision, Visual Processing, and Digital Display III. International Society for Optics and Photonics, 2--15.Google ScholarGoogle Scholar
  11. Scott J. Daly. 1998. Engineering observations from spatiovelocity and spatiotemporal visual models. In SPIE 3299, Human Vision and Electronic Imaging. 180--191.Google ScholarGoogle Scholar
  12. H De Lange. 1952. Experiments on flicker and some calculations on an electrical analogue of the foveal systems. Physica 18, 11 (1952), 935--950.Google ScholarGoogle ScholarCross RefCross Ref
  13. Gyorgy Denes and Rafał K. Mantiuk. 2020. Predicting visible flicker in temporally changing images. Electronic Imaging 2020, 11 (2020), 233--1.Google ScholarGoogle Scholar
  14. M. A. Georgeson and G. D. Sullivan. 1975. Contrast constancy: deblurring in human vision by spatial frequency channels. The J. of Physiology 252, 3 (1975), 627--656.Google ScholarGoogle ScholarCross RefCross Ref
  15. Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. 2012. Foveated 3D graphics. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S.T. Hammett and A.T. Smith. 1992. Two temporal channels or three? A re-evaluation. Vision Research 32, 2 (February 1992), 285--291.Google ScholarGoogle ScholarCross RefCross Ref
  17. E. Hartmann, B. Lachenmayr, and H. Brettel. 1979. The peripheral critical flicker frequency. Vision Research 19, 9 (jan 1979), 1019--1023. Google ScholarGoogle ScholarCross RefCross Ref
  18. D. H. Kelly. 1979a. Motion and vision. I. Stabilized images of stationary gratings. Journal of the Optical Society of America 69, 9 (1979), 1266--1274.Google ScholarGoogle ScholarCross RefCross Ref
  19. D. H. Kelly. 1979b. Motion and vision. II. Stabilized spatio-temporal threshold surface. Journal of Optical Society of America 69, 10 (1979), 1340--1349.Google ScholarGoogle ScholarCross RefCross Ref
  20. Jan J. Koenderink, Maarten A. Bouman, Albert E. Bueno de Mesquita, and Sybe Slappendel. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns IV The influence of the mean retinal illuminance. Journal of the Optical Society of America 68, 6 (June 1978), 860 -- 865.Google ScholarGoogle Scholar
  21. Brooke Krajancich, Petr Kellnhofer, and Gordon Wetzstein. 2021. A Perceptual Model for Eccentricity-Dependent Spatio-Temporal Flicker Fusion and Its Applications to Foveated Graphics. ACM Trans. Graph. 40, 4, Article 47 (July 2021), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Justin Laird, Mitchell Rosen, Jeff Pelz, Ethan Montag, and Scott Daly. 2006. Spatiovelocity CSF as a function of retinal velocity using unstabilized stimuli. In SPIE 6057, Human Vision and Electronic Imaging XI.Google ScholarGoogle Scholar
  23. G. E. Legge and J. M. Foley. 1980. Contrast masking in human vision. Journal of the Optical Society of America 70, 12 (December 1980), 1458--1471.Google ScholarGoogle ScholarCross RefCross Ref
  24. Rafal Mantiuk, Scott J Daly, Karol Myszkowski, and Hans-Peter Seidel. 2005. Predicting visible differences in high dynamic range images: model and its calibration. In Human Vision and Electronic Imaging X, Vol. 5666. International Society for Optics and Photonics, 204--214.Google ScholarGoogle ScholarCross RefCross Ref
  25. Rafał K. Mantiuk, S. Daly, and L. Kerofsky. 2008. Display adaptive tone mapping. ACM Transactions on Graphics 27, 3 (2008), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rafał K. Mantiuk, Gyorgy Denes, Alexandre Chapiro, Anton Kaplanyan, Gizem Rufo, Romain Bachy, Trisha Lian, and Anjul Patney. 2021. FovVideoVDP: A visible difference predictor for wide field-of-view video. ACM Transaction on Graphics 40, 4 (2021), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rafał K. Mantiuk, Kil Joong Kim, Allan G. Rempel, and Wolfgang Heidrich. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Transactions on Graphics 30, 4 (July 2011), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rafał K. Mantiuk, Minjung Kim, Maliha Ashraf, Qiang Xu, M. Ronnier Luo, Jasna Martinovic, and Sophie Wuerger. 2020. Practical Color Contrast Sensitivity Functions for Luminance Levels up to 10000 cd/m2. In Color and Imaging Conference, Vol. 2020. Society for Imaging Science and Technology, 1--6.Google ScholarGoogle Scholar
  29. W. H. Merigan, L. M. Katz, and J. H. Maunsell. 1991. The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. The Journal of Neuroscience 11, 4 (April 1991), 994--1001.Google ScholarGoogle ScholarCross RefCross Ref
  30. Juvi Mustonen, Jyrki Rovamo, and Risto Näsänen. 1993. The effects of grating area and spatial frequency on contrast sensitivity as a function of light level. Vision Research 33, 15 (October 1993), 2065--2072.Google ScholarGoogle ScholarCross RefCross Ref
  31. Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir Benty, David Luebke, and Aaron Lefohn. 2016. Towards foveated rendering for gaze-tracked virtual reality. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. G. Pelli, Melanie Palomares, and Najib J. Majaj. 2004. Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision 4, 12 (dec 2004), 12. Google ScholarGoogle ScholarCross RefCross Ref
  33. John G. Robson. 1966. Spatial and temporal contrast-sensitivity functions of the visual system. Journal of Optical Society of America 56, 8 (1966), 1141--1142.Google ScholarGoogle ScholarCross RefCross Ref
  34. Ankit Rohatgi. 2021. Webplotdigitizer: Version 4.5. https://automeris.io/WebPlotDigitizerGoogle ScholarGoogle Scholar
  35. Jyrki Rovamo, Olavi Luntinen, and Risto Näsänen. 1993. Modelling the dependence of contrast sensitivity on grating area and spatial frequency. Vision Research 33, 18 (December 1993), 2773--2788.Google ScholarGoogle ScholarCross RefCross Ref
  36. Jyrki Rovamo, Juvi Mustonen, and Risto Näsänen. 1995. Neural modulation transfer function of the human visual system at various eccentricities. Vision Research 35, 6 (March 1995), 767--774.Google ScholarGoogle ScholarCross RefCross Ref
  37. Robert L. Savoy and John J. McCann. 1975. Visibility of low-spatial-frequency sine-wave targets: Dependence on number of cycles. Journal of the Optical Society of America 65, 3 (March 1975), 343--350.Google ScholarGoogle ScholarCross RefCross Ref
  38. Otto H. Schade. 1956. Optical and photoelectric analog of the eye. Journal of Optical Society of America 46, 9 (1956), 721--739.Google ScholarGoogle ScholarCross RefCross Ref
  39. Vincent Sitzmann, Ana Serrano, Amy Pavel, Maneesh Agrawala, Diego Gutierrez, Belen Masia, and Gordon Wetzstein. 2018. Saliency in VR: How do people explore virtual environments? IEEE transactions on Visualization and Computer Graphics (2018).Google ScholarGoogle Scholar
  40. Robert J. Snowden, Robert F. Hess, and Sarah J. Waugh. 1995. The Processing of Temporal Modulation at Different Levels of Retinal Illuminance. Vision Research 35, 6 (1995), 775--789.Google ScholarGoogle ScholarCross RefCross Ref
  41. Hans Strasburger, Ingo Rentschler, and Martin Jüttner. 2011. Peripheral vision and pattern recognition: A review. Journal of Vision 11, 5 (2011), 1--82.Google ScholarGoogle ScholarCross RefCross Ref
  42. Okan Tarhan Tursun, Elena Arabadzhiyska-Koleva, Marek Wernikowski, Radosław Mantiuk, Hans-Peter Seidel, Karol Myszkowski, and Piotr Didyk. 2019. Luminance-contrast-aware foveated rendering. ACM Transactions on Graphics 38 (2019).Google ScholarGoogle Scholar
  43. Christopher W. Tyler and Russell D. Hamer. 1990. Analysis of visual modulation sensitivity. IV. Validity of the Ferry-Porter law. Journal of Optical Society of America A 7, 4 (1990), 743--758.Google ScholarGoogle ScholarCross RefCross Ref
  44. Christopher W Tyler and Russell D Hamer. 1993. Eccentricity and the Ferry-Porter law. Journal of Optical Society of America A 10, 9 (1993), 2084--2087.Google ScholarGoogle ScholarCross RefCross Ref
  45. Peter Vangorp, Karol Myszkowski, Erich W. Graf, and Rafał K. Mantiuk. 2015. A model of local adaptation. ACM Transactions on Graphics 34, 6 (oct 2015), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. V. Virsu and J. Rovamo. 1979. Visual resolution, contrast sensitivity, and the cortical magnification factor. Experimental Brain Research 37, 3 (1979), 475--494.Google ScholarGoogle ScholarCross RefCross Ref
  47. Veijo Virsu, Jyrki Rovamo, and Pentti Laurinen. 1982. Temporal Contrast Sensitivity and Cortical Magnification. Vision Research 22 (1982), 1211--1217.Google ScholarGoogle ScholarCross RefCross Ref
  48. Andrew B. Watson. 2000. Visual detection of spatial contrast patterns: Evaluation of five simple models. Optics Express 6, 1 (2000), 12--33.Google ScholarGoogle ScholarCross RefCross Ref
  49. Andrew B. Watson. 2018. The field of view, the field of resolution, and the field of contrast sensitivity. Journal of Perceptual Imaging 1, 1 (January 2018), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  50. Andrew B. Watson and Albert J. Ahumada. 2005. A standard model for foveal detection of spatial contrast. Journal of Vision 5, 9 (2005), 717--740.Google ScholarGoogle ScholarCross RefCross Ref
  51. Andrew B. Watson and Albert J. Ahumada. 2016. The pyramid of visibility. Electronic Imaging 16 (2016), 37--42.Google ScholarGoogle Scholar
  52. M. J. Wright and A. Johnston. 1983. Spatiotemporal contrast sensitivity and visual field locus. Vision Research 23, 10 (1983), 983--989.Google ScholarGoogle ScholarCross RefCross Ref
  53. Sophie Wuerger, Maliha Ashraf, Minjung Kim, Jasna Martinovic, María Pérez-Ortiz, and Rafał K. Mantiuk. 2020. Spatio-chromatic contrast sensitivity under mesopic and photopic light levels. Journal of Vision 20, 4 (April 2020), 23.Google ScholarGoogle ScholarCross RefCross Ref
  54. Shinyoung Yi, Daniel S. Jeon, Ana Serrano, Se-Yoon Jeong, Hui-Yong Kim, Diego Gutierrez, and Min H. Kim. 2022. Modelling Surround-aware Contrast Sensitivity for HDR Displays. Computer Graphics Forum 41, 1 (feb 2022), 350--363.Google ScholarGoogle ScholarCross RefCross Ref
  55. Wenjun Zeng, Scott Daly, and Shawmin Lei. 2002. An overview of the visual optimization tools in JPEG 2000. Signal Processing: Image Communication 17 (2002).Google ScholarGoogle Scholar

Index Terms

  1. stelaCSF: a unified model of contrast sensitivity as the function of spatio-temporal frequency, eccentricity, luminance and area

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 Owner/Author

      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader