skip to main content
research-article

Computing sparse integer-constrained cones for conformal parameterizations

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

We propose a novel method to generate sparse integer-constrained cone singularities with low distortion constraints for conformal parameterizations. Inspired by [Fang et al. 2021; Soliman et al. 2018], the cone computation is formulated as a constrained optimization problem, where the objective is the number of cones measured by the 0-norm of Gaussian curvature of vertices, and the constraint is to restrict the cone angles to be multiples of π/2 and control the distortion while ensuring that the Yamabe equation holds. Besides, the holonomy angles for the non-contractible homology loops are additionally required to be multiples of π/2 for achieving rotationally seamless conformal parameterizations. The Douglas-Rachford (DR) splitting algorithm is used to solve this challenging optimization problem, and our success relies on two key components. First, replacing each integer constraint with the intersection of a box set and a sphere enables us to manage the subproblems in DR splitting update steps in the continuous domain. Second, a novel solver is developed to optimize the 0-norm without any approximation. We demonstrate the effectiveness and feasibility of our algorithm on a data set containing 3885 models. Compared to state-of-the-art methods, our method achieves a better tradeoff between the number of cones and the parameterization distortion.

Skip Supplemental Material Section

Supplemental Material

3528223.3530118.mp4

presentation

References

  1. Edoardo Amaldi and Viggo Kann. 1998. On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems. Theor. Comput. Sci. 209, 1--2 (1998), 237--260.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Thierry Aubin. 2013. Some nonlinear problems in Riemannian geometry. Springer Science & Business Media.Google ScholarGoogle Scholar
  3. Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas Guibas. 2010. On discrete killing vector fields and patterns on surfaces. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1701--1711.Google ScholarGoogle Scholar
  4. Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. 2008. Conformal flattening by curvature prescription and metric scaling. In Computer Graphics Forum, Vol. 27. 449--458.Google ScholarGoogle ScholarCross RefCross Ref
  5. David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013a. Integer-grid maps for reliable quad meshing. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini, and Denis Zorin. 2013b. Quad-Mesh Generation and Processing: A Survey. Comput. Graph. Forum 32, 6 (2013), 51--76.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation. ACM Transactions On Graphics (TOG) 28, 3 (2009), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and Denis Zorin. 2021. Efficient and Robust Discrete Conformal Equivalence with Boundary. arXiv preprint arXiv:2104.04614 (2021).Google ScholarGoogle Scholar
  9. Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless Parametrization with Arbitrary Cones for Arbitrary Genus. ACM Trans. Graph. 39 (2019).Google ScholarGoogle Scholar
  10. Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. 2008. Enhancing sparsity by reweighted 1 minimization. Journal of Fourier analysis and applications 14, 5--6 (2008), 877--905.Google ScholarGoogle ScholarCross RefCross Ref
  11. Pascal Cherrier. 1984. Problemes de Neumann non linéaires sur les variétés riemanniennes. Journal of Functional Analysis 57, 2 (1984), 154--206.Google ScholarGoogle ScholarCross RefCross Ref
  12. Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial connections on discrete surfaces. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1525--1533.Google ScholarGoogle Scholar
  13. Tamal K Dey, Fengtao Fan, and Yusu Wang. 2013. An efficient computation of handle and tunnel loops via Reeb graphs. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Designing N-PolyVector fields with complex polynomials. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jim Douglas and H. H. Rachford. 1956. On the Numerical Solution of Heat Conduction Problems in Two and Three Space Variables. Trans. Amer. Math. Soc. 82, 2 (1956), 421--439.Google ScholarGoogle ScholarCross RefCross Ref
  16. Qing Fang, Wenqing Ouyang, Mo Li, Ligang Liu, and Xiao-Ming Fu. 2021. Computing sparse cones with bounded distortion for conformal parameterizations. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Nahum Farchi and Mirela Ben-Chen. 2018. Integer-only cross field computation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. 2007. Design of tangent vector fields. ACM transactions on graphics (TOG) 26, 3 (2007), 56--es.Google ScholarGoogle Scholar
  19. Christodoulos A Floudas. 1995. Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford University Press.Google ScholarGoogle Scholar
  20. G Anthony Gorry, Jeremy F Shapiro, and Laurence A Wolsey. 1972. Relaxation methods for pure and mixed integer programming problems. Management Science 18, 5-part-1 (1972), 229--239.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  22. Lei He and Scott Schaefer. 2013. Mesh denoising via 0 minimization. ACM Trans. Graph. 32, 4 (2013), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. Quadcover-surface parameterization using branched coverings. In Computer graphics forum, Vol. 26. Wiley Online Library, 375--384.Google ScholarGoogle Scholar
  24. Liliya Kharevych, Boris Springborn, and Peter Schröder. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25, 2 (2006), 412--438.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Transactions on Graphics (ToG) 32, 4 (2013), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. G Hosein Mohimani, Massoud Babaie-Zadeh, and Christian Jutten. 2007. Fast sparse representation based on smoothed 0 norm. In International Conference on Independent Component Analysis and Signal Separation. 389--396.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ashish Myles and Denis Zorin. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4 (2012), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. K. Natarajan. 1995. Sparse Approximate Solutions to Linear Systems. SIAM J. Comput. 24, 2 (1995), 227--234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rohan Sawhney and Keenan Crane. 2017. Boundary First Flattening. ACM Trans. Graph. 37, 1 (2017), 5:1--5:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yousuf Soliman, Dejan Slepčev, and Keenan Crane. 2018. Optimal Cone Singularities for Conformal Flattening. ACM Trans. Graph. 37, 4 (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 27, 3 (2008), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional field synthesis, design, and processing. Comput. Graph. Forum 35, 2 (2016), 545--572.Google ScholarGoogle ScholarCross RefCross Ref
  33. Ke Wang, Yiying Tong, Mathieu Desbrun, and Peter Schröder. 2006. Edge subdivision schemes and the construction of smooth vector fields. ACM Transactions on Graphics (TOG) 25, 3 (2006), 1041--1048.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Baoyuan Wu and Bernard Ghanem. 2018. P-Box ADMM: A Versatile Framework for Integer Programming. IEEE transactions on pattern analysis and machine intelligence 41, 7 (2018), 1695--1708.Google ScholarGoogle Scholar
  35. Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. 2011. Image smoothing via 0 gradient minimization. In Proceedings of the 2011 SIGGRAPH Asia Conference. 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tianyu Zhu, Chunyang Ye, Shuangming Chai, and Xiao-Ming Fu. 2020. Greedy Cut Construction for Parameterizations. Comput. Graph. Forum 39, 2 (2020), 191--202.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Computing sparse integer-constrained cones for conformal parameterizations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader