Abstract
We present an efficient, purely geometric, algorithmic, and parameter free approach to improve surface quality and accuracy in voxel-controlled 3D printing by counteracting quantization artifacts. Such artifacts arise due to the discrete voxel sampling of the continuous shape used to control the 3D printer, and are characterized by low-frequency geometric patterns on surfaces of any orientation. They are visually disturbing, particularly on small prints or smooth surfaces, and adversely affect the fatigue behavior of printed parts. We use implicit shape dithering, displacing the part's signed distance field with a high-frequent signal whose amplitude is adapted to the (anisotropic) print resolution. We expand the reverse generalized Fourier slice theorem by shear transforms, which we leverage to optimize a 3D blue-noise mask to generate the anisotropic dither signal. As a point process it is efficient and does not adversely affect 3D halftoning. We evaluate our approach for efficiency, geometric accuracy and show its advantages over the state of the art.
Supplemental Material
Available for Download
- 3D Printing Industry. 2020. Mimaki 3DUJ-2207 UV-LED 3D Printer. https://3dprintingindustry.com/news/mimaki-opens-up-full-3d-color-printing-for-less-than-e40k-with-3duj-2207-uv-led-3d-printer-178953/.Google Scholar
- A.U. Agar and J.P. Allebach. 2005. Model-based color halftoning using direct binary search. Image Processing, IEEE Transactions on 14, 12 (2005), 1945--1959.Google Scholar
Digital Library
- M. Alexa, K. Hildebrand, and S. Lefebvre. 2017. Optimal Discrete Slicing. ACM TOG 36, 1, Article 12 (Jan. 2017), 16 pages. Google Scholar
Digital Library
- M. Alexa and J.E. Kyprianidis. 2015. Error diffusion on meshes. Computers and Graphics (Proc. SMI 2014) 46 (2015), 336--344.Google Scholar
- T. Auzinger, W. Heidrich, and B. Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 1--16.Google Scholar
Digital Library
- T. Baar, S. Samadzadegan, H. Brettel, P. Urban, and M. V. Ortiz Segovia. 2014. Printing gloss effects in a 2.5 D system. In IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 90180M--90180M.Google Scholar
- V. Babaei, K. Vidimče, M. Foshey, A. Kaspar, P. Didyk, and W. Matusik. 2017. Color contoning for 3D printing. ACM TOG (Proc. SIGGRAPH) 36, 124 (2017). Issue 4.Google Scholar
- B. E. Bayer. 1973. An optimum method for two-level rendition of continuous-tone pictures. In IEEE Intl. Conf. on Comm. Seattle, WA, 11--15.Google Scholar
- A. Brunton and L. Abu Rmaileh. 2021. Displaced Signed Distance Fields for Additive Manufacturing. ACM TOG (Proc. SIGGRAPH) 40, 4 (2021).Google Scholar
- A. Brunton, C. A. Arikan, T. M. Tanksale, and P. Urban. 2018. 3D Printing Spatially Varying Color and Translucency. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 157:1--157:13.Google Scholar
- A. Brunton, C. A. Arikan, and P. Urban. 2015. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM TOG 35, 1 (2015), 4.Google Scholar
Digital Library
- J. Chang, B. Alain, and V. Ostromoukhov. 2009. Structure-Aware Error Diffusion. ACM TOG (Proc. SIGGRAPH Asia) 28, 5 (2009), 162:1--162:8.Google Scholar
- W. Cho, E.M. Sachs, N. M. Patrikalakis, and D. E. Troxel. 2003. A dithering algorithm for local composition control with three-dimensional printing. CAD 35, 9 (2003), 851--867.Google Scholar
Cross Ref
- Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara, and Ugo Erra (Eds.). The Eurographics Association. Google Scholar
Cross Ref
- D. Cohen-Or and A. Kaufman. 1995. Fundamentals of Surface Voxelization. Graphical Models and Image Processing 57, 6 (November 1995), 453--461.Google Scholar
Digital Library
- Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010), 62:1--62:10.Google Scholar
- DP Polar. 2020. AMpolar i2. https://www.dppolar.de/en/3d-printer.Google Scholar
- O. Elek, D. Sumin, R. Zhang, T. Weyrich, K. Myszkowski, B. Bickel, A. Wilkie, and J. Křivánek. 2017. Scattering-aware Texture Reproduction for 3D Printing. ACM TOG (Proc. of SIGGRAPH Asia) 36, 6 (2017), 241:1--241:15.Google Scholar
- R.W. Floyd and L. Steinberg. 1976. An adaptive algorithm for spatial grey scale. In Proceedings of the Society of Information Display. SID, 75--77.Google Scholar
- M. Hašan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010), 61:1--61:9.Google Scholar
- Fraunhofer IGD. 2020. Cuttlefish Version 2020.09. https://www.cuttlefish.de/.Google Scholar
- Intel. 2020. Intel Threading Building Blocks. https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html.Google Scholar
- A. Kampker, K. Kreisköther, and C. Reinders. 2017. Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments. International Journal of Materials and Metallurgical Engineering 11, 3 (2017), 242 -- 249. https://publications.waset.org/vol/123Google Scholar
- E. Kritchman. 2010. Method for printing of three-dimensional objects. US Patent 7,658,976.Google Scholar
- Ares Lagae and George Drettakis. 2011. Filtering solid Gabor noise. ACM Transactions on Graphics (TOG) 30, 4 (2011), 1--6.Google Scholar
Digital Library
- Y. Lan, Y. Dong, F. Pellacini, and X. Tong. 2013. Bi-scale appearance fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013), 145--1.Google Scholar
Digital Library
- D.L. Lau, G.R. Arce, and N.C. Gallagher. 1999. Digital halftoning by means of green-noise masks. JOSA A 16, 7 (1999), 1575--1586.Google Scholar
Cross Ref
- D. L. Lau and G. R. Arce. 2001. Modern digital halftoning. CRC Press.Google Scholar
- W.E. Lorensen and H.E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 163--169. Google Scholar
Digital Library
- A. Luongo, V. Falster, M.B. Doest, M.M. Ribo, E.R. Eiríksson, D.B. Pedersen, and J.R. Frisvad. 2020. Microstructure control in 3D printing with digital light processing. 39, 1 (2020), 347--359.Google Scholar
- T. Malzbender, R. Samadani, S. Scher, A. Crume, D. Dunn, and J. Davis. 2012. Printing reflectance functions. ACM TOG 31, 3 (2012), 1--11.Google Scholar
Digital Library
- W. Matusik, B. Ajdin, J. Gu, J. Lawrence, H. Lensch, F. Pellacini, and S. Rusinkiewicz. 2009. Printing spatially-varying reflectance. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 128.Google Scholar
- Mimaki. 2020. 3DUJ-553 3D Printer. https://www.mimakieurope.com/products/3d/3duj-553/.Google Scholar
- T. Mitsa and K.J. Parker. 1992. Digital halftoning technique using a blue-noise mask. JOSA A 9, 11 (1992), 1920--1929.Google Scholar
Cross Ref
- J.P. Moore and C.B. Williams. 2015. Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyping Journal (2015).Google Scholar
- P. Morovič, J. Morovič, J. Gondek, and R. Ulichney. 2017a. Direct pattern control halftoning of Neugebauer primaries. IEEE TIP 26, 9 (2017), 4404--4413.Google Scholar
- P. Morovič, J. Morovič, I. Tastl, M. Gottwals, and G. Dispoto. 2017b. HANS3D: a multi-material, volumetric, voxel-by-voxel content processing pipeline for color and beyond. In Color and Imaging Conference, Vol. 2017. Society for Imaging Science and Technology, 219--225.Google Scholar
- E. Napadensky. 2014. Method and system for three-dimensional fabrication. US Patent 8,784,723.Google Scholar
- R. Ng. 2005. Fourier slice photography. ACM TOG (2005), 735--744.Google Scholar
- A. Orth, K.L. Sampson, K. Ting, J. Boisvert, and C. Paquet. 2021. Correcting ray distortion in tomographic additive manufacturing. Optics Express 29, 7 (Mar 2021), 11037--11054. Google Scholar
Cross Ref
- V. Ostromoukhov. 2001. A Simple and Efficient Error-Diffusion Algorithm. In Proc. SIGGRAPH.Google Scholar
Digital Library
- M. Page, G. Obein, C. Boust, and A. Razet. 2017. Adapted modulation transfer function method for characterization and improvement of 3D printed surfaces. Electronic Imaging 2017, 8 (2017), 92--100.Google Scholar
Cross Ref
- W.-M. Pang, Y. Qu, T.-T. Wong, D. Cohen-Or, and P.A. Heng. 2008. Structure-aware halftoning. ACM TOG (Proc. SIGGRAPH) 27, 3 (2008), 89.Google Scholar
Digital Library
- C. Peters. 2017. Moments in Graphics: The problem with 3D blue noise. http://momentsingraphics.de/3DBlueNoise.html.Google Scholar
- M. Piovarči, M. Foshey, V. Babaei, S. Rusinkiewicz, W. Matusik, and P. Didyk. 2020. Towards spatially varying gloss reproduction for 3D printing. ACM TOG (Proc. SIGGRAPH Asia) 39, 6 (2020), 1--13.Google Scholar
Digital Library
- Quantica. 2020. Tech Platform. https://quantica3d.com/technology/.Google Scholar
- O. Rouiller, B. Bickel, J. Kautz, W. Matusik, and M. Alexa. 2013. 3D-printing spatially varying BRDFs. IEEE CG&A 33, 6 (2013), 48--57.Google Scholar
- S. Samadzadegan, T. Baar, P. Urban, M.V.O. Segovia, and J. Blahová. 2015. Controlling colour-printed gloss by varnish-halftones. In Measuring, Modeling, and Reproducing Material Appearance 2015, Vol. 9398. International Society for Optics and Photonics, 93980V.Google Scholar
- Stratasys. 2020. J8 Series 3D Printers. https://www.stratasys.com/3d-printers/j8-series.Google Scholar
- D. Sumin, T. Rittig, Babaei V, T. Nindel, A. Wilkie, P. Didyk, B. Bickel, J. KR, ivánek, K. Myszkowski, and T. Weyrich. 2019. Geometry-aware scattering compensation for 3D printing. ACM TOG (Proc. SIGGRAPH) 38, 4 (2019).Google Scholar
- G. Taubin. 1995. A Signal Processing Approach to Fair Surface Design. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '95). Association for Computing Machinery, New York, NY, USA, 351--358. Google Scholar
Digital Library
- R.A. Ulichney. 1993. Void-and-cluster method for dither array generation. In Human Vision, Visual Processing, and Digital Display IV, Vol. 1913. International Society for Optics and Photonics, 332--343.Google Scholar
- F. L. Van Nes and M. A. Bouman. 1967. Spatial modulation transfer in the human eye. JOSA 57, 3 (1967), 401--406.Google Scholar
Cross Ref
- Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600--612.Google Scholar
Digital Library
- Xaar. 2020. High Laydown Technology. https://www.xaar.com/en/about/xaar-technologies/high-laydown-technology/.Google Scholar
- D.-M. Yan, J.-W. Guo, B. Wang, X.-P. Zhang, and P. Wonka. 2015. A Survey of Blue-Noise Sampling and Its Applications. J. Comp. Sci. and Tech. 30 (2015), 439--453.Google Scholar
Cross Ref
- B. Zhou and X. Fang. 2003. Improving Mid-tone Quality of Variable-Coefficient Error Diffusion Using Threshold Modulation. ACM TOG (Proc. SIGGRAPH) 22, 3 (2003), 437--444.Google Scholar
Digital Library
Index Terms
Shape dithering for 3D printing
Recommendations
3D Printing Firm Inflatables with Internal Tethers
CHI EA '21: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing SystemsThis paper presents a technique for 3D printing firm inflatables with consumer-grade fused-deposition modeling (FDM) 3D printers and flexible filaments. By printing bridges inside the inflatable to tie its walls, internal tethers can retain the shape ...
Automated Filament Inking for Multi-color FFF 3D Printing
UIST '22: Proceedings of the 35th Annual ACM Symposium on User Interface Software and TechnologyWe propose a novel system for low-cost multi-color Fused Filament Fabrication (FFF) 3D printing, allowing for the creation of customizable colored filament using a pre-processing approach. We developed an open-source device to automatically ink ...
Color contoning for 3D printing
Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts ...





Comments