skip to main content
research-article
Open Access

Face deblurring using dual camera fusion on mobile phones

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Motion blur of fast-moving subjects is a longstanding problem in photography and very common on mobile phones due to limited light collection efficiency, particularly in low-light conditions. While we have witnessed great progress in image deblurring in recent years, most methods require significant computational power and have limitations in processing high-resolution photos with severe local motions. To this end, we develop a novel face deblurring system based on the dual camera fusion technique for mobile phones. The system detects subject motion to dynamically enable a reference camera, e.g., ultrawide angle camera commonly available on recent premium phones, and captures an auxiliary photo with faster shutter settings. While the main shot is low noise but blurry (Figure 1(a)), the reference shot is sharp but noisy (Figure 1(b)). We learn ML models to align and fuse these two shots and output a clear photo without motion blur (Figure 1(c)). Our algorithm runs efficiently on Google Pixel 6, which takes 463 ms overhead per shot. Our experiments demonstrate the advantage and robustness of our system against alternative single-image, multi-frame, face-specific, and video deblurring algorithms as well as commercial products. To the best of our knowledge, our work is the first mobile solution for face motion deblurring that works reliably and robustly over thousands of images in diverse motion and lighting conditions.

Skip Supplemental Material Section

Supplemental Material

3528223.3530131.mp4

presentation

References

  1. 2021. Android Camera2 API. https://developer.android.com/guide/topics/media/camera.Google ScholarGoogle Scholar
  2. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265--283.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Miika Aittala and Frédo Durand. 2018. Burst image deblurring using permutation invariant convolutional neural networks. In ECCV. 731--747.Google ScholarGoogle Scholar
  4. Giacomo Boracchi and Alessandro Foi. 2012. Modeling the performance of image restoration from motion blur. IEEE TIP 21, 8 (2012), 3502--3517.Google ScholarGoogle Scholar
  5. Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. 2012. A naturalistic open source movie for optical flow evaluation. In ECCV. 611--625.Google ScholarGoogle Scholar
  6. Meng Chang, Huajun Feng, Zhihai Xu, and Qi Li. 2021. Low-light image restoration with short-and long-exposure raw pairs. IEEE Transactions on Multimedia.Google ScholarGoogle Scholar
  7. Qifeng Chen and Vladlen Koltun. 2017. Photographic image synthesis with cascaded refinement networks. In ICCV. 1511--1520.Google ScholarGoogle Scholar
  8. Sunghyun Cho and Seungyong Lee. 2009. Fast motion deblurring. In ACM TOG. 1--8.Google ScholarGoogle Scholar
  9. Sunghyun Cho, Jue Wang, and Seungyong Lee. 2012. Video deblurring for hand-held cameras using patch-based synthesis. ACM SIGGRAPH 31, 4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. 2021. Rethinking coarse-to-fine approach in single image deblurring. In ICCV. 4641--4650.Google ScholarGoogle Scholar
  11. Mauricio Delbracio, Ignacio Garcia-Dorado, Sungjoon Choi, Damien Kelly, and Peyman Milanfar. 2021. Polyblur: Removing mild blur by polynomial reblurring. IEEE Transactions on Computational Imaging 7, 837--848.Google ScholarGoogle ScholarCross RefCross Ref
  12. Mauricio Delbracio and Guillermo Sapiro. 2015a. Burst deblurring: Removing camera shake through Fourier burst accumulation. In CVPR. 2385--2393.Google ScholarGoogle Scholar
  13. Mauricio Delbracio and Guillermo Sapiro. 2015b. Hand-held video deblurring via efficient fourier aggregation. Transactions on Computational Imaging 1, 4.Google ScholarGoogle Scholar
  14. Senyou Deng, Wenqi Ren, Yanyang Yan, Tao Wang, Fenglong Song, and Xiaochun Cao. 2021. Multi-Scale Separable Network for Ultra-High-Definition Video Deblurring. In CVPR. 14030--14039.Google ScholarGoogle Scholar
  15. Henry Dietz and Paul Eberhart. 2019. Shuttering methods and the artifacts they produce. Electronic Imaging 2019, 4.Google ScholarGoogle Scholar
  16. Jiangxin Dong, Jinshan Pan, Zhixun Su, and Ming-Hsuan Yang. 2017. Blind image deblurring with outlier handling. In ICCV. 2478--2486.Google ScholarGoogle Scholar
  17. Jana Ehmann, Lun-Cheng Chu, Sung-Fang Tsai, and Chia-Kai Liang. 2018. Real-time video denoising on mobile phones. In ICIP. 505--509.Google ScholarGoogle Scholar
  18. Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T Roweis, and William T Freeman. 2006. Removing camera shake from a single photograph. In ACM SIGGRAPH. 787--794.Google ScholarGoogle Scholar
  19. Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian. 2008.Google ScholarGoogle Scholar
  20. Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE TIP 17, 10 (2008), 1737--1754.Google ScholarGoogle Scholar
  21. Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. 2019. Dynamic scene deblurring with parameter selective sharing and nested skip connections. In CVPR. 3848--3856.Google ScholarGoogle Scholar
  22. Amnon Geifman. 2020. The Correct Way to Measure Inference Time of Deep Neural Networks. https://deci.ai/resources/blog/measure-inference-time-deep-neural-networks/.Google ScholarGoogle Scholar
  23. Dong Gong, Jie Yang, Lingqiao Liu, Yanning Zhang, Ian Reid, Chunhua Shen, Anton Van Den Hengel, and Qinfeng Shi. 2017. From motion blur to motion flow: A deep learning solution for removing heterogeneous motion blur. In CVPR. 2319--2328.Google ScholarGoogle Scholar
  24. Chunzhi Gu, Xuequan Lu, Ying He, and Chao Zhang. 2020. Blur removal via blurrednoisy image pair. IEEE TIP 30, 345--359.Google ScholarGoogle Scholar
  25. Yoav Hacohen, Eli Shechtman, and Dani Lischinski. 2013. Deblurring by example using dense correspondence. In ICCV. 2384--2391.Google ScholarGoogle Scholar
  26. Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T Barron, Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM SIGGRAPH 35, 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861.Google ScholarGoogle Scholar
  28. Xiaobin Hu, Wenqi Ren, Kaicheng Yu, Kaihao Zhang, Xiaochun Cao, Wei Liu, and Bjoern Menze. 2021. Pyramid architecture search for real-time image deblurring. In ICCV. 4298--4307.Google ScholarGoogle Scholar
  29. Zhe Hu, Sunghyun Cho, Jue Wang, and Ming-Hsuan Yang. 2014. Deblurring low-light images with light streaks. In ICCV. 3382--3389.Google ScholarGoogle Scholar
  30. Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely connected convolutional networks. In CVPR. 4700--4708.Google ScholarGoogle Scholar
  31. Tae Hyun Kim and Kyoung Mu Lee. 2015. Generalized video deblurring for dynamic scenes. In CVPR. 5426--5434.Google ScholarGoogle Scholar
  32. Tae Hyun Kim, Kyoung Mu Lee, Bernhard Scholkopf, and Michael Hirsch. 2017. Online video deblurring via dynamic temporal blending network. In ICCV. 4038--4047.Google ScholarGoogle Scholar
  33. Adam Kaufman and Raanan Fattal. 2020. Deblurring using analysis-synthesis networks pair. In CVPR. 5811--5820.Google ScholarGoogle Scholar
  34. Tae Hyun Kim, Mehdi SM Sajjadi, Michael Hirsch, and Bernhard Scholkopf. 2018. Spatio-temporal transformer network for video restoration. In ECCV. 106--122.Google ScholarGoogle Scholar
  35. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980.Google ScholarGoogle Scholar
  36. Jaihyun Koh, Jangho Lee, and Sungroh Yoon. 2021. Single-image deblurring with neural networks: A comparative survey. CVIU 203.Google ScholarGoogle Scholar
  37. Dilip Krishnan, Terence Tay, and Rob Fergus. 2011. Blind deconvolution using a normalized sparsity measure. In CVPR. 233--240.Google ScholarGoogle Scholar
  38. Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiří Matas. 2018. Deblurgan: Blind motion deblurring using conditional adversarial networks. In CVPR. 8183--8192.Google ScholarGoogle Scholar
  39. Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. 2019. DeblurGANv2: Deblurring (orders-of-magnitude) faster and better. In ICCV. 8878--8887.Google ScholarGoogle Scholar
  40. Wei-Sheng Lai, Jian-Jiun Ding, Yen-Yu Lin, and Yung-Yu Chuang. 2015. Blur kernel estimation using normalized color-line prior. In ICCV. 64--72.Google ScholarGoogle Scholar
  41. Lerenhan Li, Jinshan Pan, Wei-Sheng Lai, Changxin Gao, Nong Sang, and Ming-Hsuan Yang. 2018. Learning a discriminative prior for blind image deblurring. In CVPR. 6616--6625.Google ScholarGoogle Scholar
  42. Lerenhan Li, Jinshan Pan, Wei-Sheng Lai, Changxin Gao, Nong Sang, and Ming-Hsuan Yang. 2020. Dynamic scene deblurring by depth guided model. IEEE TIP 29, 5273--5288.Google ScholarGoogle Scholar
  43. Orly Liba, Kiran Murthy, Yun-Ta Tsai, Tim Brooks, Tianfan Xue, Nikhil Karnad, Qiurui He, Jonathan T Barron, Dillon Sharlet, Ryan Geiss, et al. 2019. Handheld mobile photography in very low light. ACM SIGGRAPH 38, 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Songnan Lin, Jiawei Zhang, Jinshan Pan, Yicun Liu, Yongtian Wang, Jing Chen, and Jimmy Ren. 2020. Learning to deblur face images via sketch synthesis. In AAAI, Vol. 34.Google ScholarGoogle ScholarCross RefCross Ref
  45. Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. 2016. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In CVPR. 4040--4048.Google ScholarGoogle Scholar
  46. Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. 2017. Deep multi-scale convolutional neural network for dynamic scene deblurring. In CVPR. 3883--3891.Google ScholarGoogle Scholar
  47. Seungjun Nah, Sanghyun Son, and Kyoung Mu Lee. 2019. Recurrent neural networks with intra-frame iterations for video deblurring. In CVPR. 8102--8111.Google ScholarGoogle Scholar
  48. Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang. 2014. Deblurring face images with exemplars. In ECCV. 47--62.Google ScholarGoogle Scholar
  49. Jinshan Pan, Zhouchen Lin, Zhixun Su, and Ming-Hsuan Yang. 2016a. Robust kernel estimation with outliers handling for image deblurring. In ICCV. 2800--2808.Google ScholarGoogle Scholar
  50. Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-Hsuan Yang. 2016b. Blind image deblurring using dark channel prior. In CVPR. 1628--1636.Google ScholarGoogle Scholar
  51. Tobias Plotz and Stefan Roth. 2017. Benchmarking denoising algorithms with real photographs. In CVPR. 1586--1595.Google ScholarGoogle Scholar
  52. Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter Shirley. 2001. Color transfer between images. IEEE Computer graphics and applications 21, 5 (2001), 34--41.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Wenqi Ren, Xiaochun Cao, Jinshan Pan, Xiaojie Guo, Wangmeng Zuo, and Ming-Hsuan Yang. 2016. Image deblurring via enhanced low-rank prior. IEEE TIP 25, 7.Google ScholarGoogle Scholar
  54. Wenqi Ren, Jinshan Pan, Xiaochun Cao, and Ming-Hsuan Yang. 2017. Video deblurring via semantic segmentation and pixel-wise non-linear kernel. In ICCV. 1077--1085.Google ScholarGoogle Scholar
  55. Wenqi Ren, Jiaolong Yang, Senyou Deng, David Wipf, Xiaochun Cao, and Xin Tong. 2019. Face video deblurring using 3d facial priors. In CVPR. 9388--9397.Google ScholarGoogle Scholar
  56. Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho. 2020. Real-world blur dataset for learning and benchmarking deblurring algorithms. In ECCV. 184--201.Google ScholarGoogle Scholar
  57. Qi Shan, Jiaya Jia, and Aseem Agarwala. 2008. High-quality motion deblurring from a single image. ACM SIGGRAPH 27, 3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, and Ming-Hsuan Yang. 2018. Deep semantic face deblurring. In CVPR. 8260--8269.Google ScholarGoogle Scholar
  59. Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, and Ming-Hsuan Yang. 2020. Exploiting semantics for face image deblurring. IJCV 128, 7.Google ScholarGoogle ScholarCross RefCross Ref
  60. Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.Google ScholarGoogle Scholar
  61. Hyeongseok Son, Junyong Lee, Jonghyeop Lee, Sunghyun Cho, and Seungyong Lee. 2021. Recurrent video deblurring with blur-invariant motion estimation and pixel volumes. ACM SIGGRAPH 40, 5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo Sapiro, Wolfgang Heidrich, and Oliver Wang. 2017. Deep video deblurring for hand-held cameras. In CVPR. 1279--1288.Google ScholarGoogle Scholar
  63. Maitreya Suin, Kuldeep Purohit, and AN Rajagopalan. 2020. Spatially-attentive patchhierarchical network for adaptive motion deblurring. In CVPR. 3606--3615.Google ScholarGoogle Scholar
  64. Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih, William T Freeman, and Ce Liu. 2021. AutoFlow: Learning a Better Training Set for Optical Flow. In CVPR. 10093--10102.Google ScholarGoogle Scholar
  65. Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. 2018. PWC-net: CNNs for optical flow using pyramid, warping, and cost volume. In CVPR. 8934--8943.Google ScholarGoogle Scholar
  66. Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. 2015. Learning a convolutional neural network for non-uniform motion blur removal. In ICCV. 769--777.Google ScholarGoogle Scholar
  67. Libin Sun, Sunghyun Cho, Jue Wang, and James Hays. 2013. Edge-based blur kernel estimation using patch priors. In ICCP. 1--8.Google ScholarGoogle Scholar
  68. Hossein Talebi and Peyman Milanfar. 2018. NIMA: Neural image assessment. IEEE TIP 27, 8.Google ScholarGoogle Scholar
  69. Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Jiaya Jia. 2018. Scale-recurrent network for deep image deblurring. In CVPR. 8174--8182.Google ScholarGoogle Scholar
  70. Zachary Teed and Jia Deng. 2020. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV. 402--419.Google ScholarGoogle Scholar
  71. Neal Wadhwa, Rahul Garg, David E Jacobs, Bryan E Feldman, Nori Kanazawa, Robert Carroll, Yair Movshovitz-Attias, Jonathan T Barron, Yael Pritch, and Marc Levoy. 2018. Synthetic depth-of-field with a single-camera mobile phone. ACM SIGGRAPH 37, 4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. 2019. EDVR: Video restoration with enhanced deformable convolutional networks. In CVPR.Google ScholarGoogle Scholar
  73. Oliver Whyte, Josef Sivic, and Andrew Zisserman. 2014. Deblurring shaken and partially saturated images. IJCV 110, 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Li Xu and Jiaya Jia. 2010. Two-phase kernel estimation for robust motion deblurring. In ECCV. 157--170.Google ScholarGoogle Scholar
  75. Li Xu, Shicheng Zheng, and Jiaya Jia. 2013. Unnatural L0 sparse representation for natural image deblurring. In CVPR. 1107--1114.Google ScholarGoogle Scholar
  76. Xiangyu Xu, Deqing Sun, Jinshan Pan, Yujin Zhang, Hanspeter Pfister, and Ming-Hsuan Yang. 2017. Learning to super-resolve blurry face and text images. In ICCV. 251--260.Google ScholarGoogle Scholar
  77. Liuge Yang and Hui Ji. 2019. A variational EM framework with adaptive edge selection for blind motion deblurring. In CVPR. 10167--10176.Google ScholarGoogle Scholar
  78. Rajeev Yasarla, Federico Perazzi, and Vishal M Patel. 2020. Deblurring face images using uncertainty guided multi-stream semantic networks. IEEE TIP 29 (2020), 6251--6263.Google ScholarGoogle Scholar
  79. Amir Yazdanbakhsh, Kiran Seshadri, Berkin Akin, James Laudon, and Ravi Narayanaswami. 2021. An evaluation of edge TPU accelerators for convolutional neural networks. arXiv:2102.10423.Google ScholarGoogle Scholar
  80. Lu Yuan, Jian Sun, Long Quan, and Heung-Yeung Shum. 2007. Image deblurring with blurred/noisy image pairs. In ACM SIGGRAPH.Google ScholarGoogle Scholar
  81. Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. 2021. Multi-stage progressive image restoration. In CVPR. 14821--14831.Google ScholarGoogle Scholar
  82. Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Koniusz. 2019. Deep stacked hierarchical multi-patch network for image deblurring. In CVPR. 5978--5986.Google ScholarGoogle Scholar
  83. Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn Stenger, Wei Liu, and Hongdong Li. 2020. Deblurring by realistic blurring. In CVPR. 2737--2746.Google ScholarGoogle Scholar
  84. Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie, Wangmeng Zuo, and Jimmy Ren. 2019. Spatio-temporal filter adaptive network for video deblurring. In CVPR. 2482--2491.Google ScholarGoogle Scholar
  85. Shaojie Zhuo, Dong Guo, and Terence Sim. 2010. Robust flash deblurring. In CVPR. 2440--2447.Google ScholarGoogle Scholar

Index Terms

  1. Face deblurring using dual camera fusion on mobile phones

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader