skip to main content
research-article

Efficient kinetic simulation of two-phase flows

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Real-life multiphase flows exhibit a number of complex and visually appealing behaviors, involving bubbling, wetting, splashing, and glugging. However, most state-of-the-art simulation techniques in graphics can only demonstrate a limited range of multiphase flow phenomena, due to their inability to handle the real water-air density ratio and to the large amount of numerical viscosity introduced in the flow simulation and its coupling with the interface. Recently, kinetic-based methods have achieved success in simulating large density ratios and high Reynolds numbers efficiently; but their memory overhead, limited stability, and numerically-intensive treatment of coupling with immersed solids remain enduring obstacles to their adoption in movie productions. In this paper, we propose a new kinetic solver to couple the incompressible Navier-Stokes equations with a conservative phase-field equation which remedies these major practical hurdles. The resulting two-phase immiscible fluid solver is shown to be efficient due to its massively-parallel nature and GPU implementation, as well as very versatile and reliable because of its enhanced stability to large density ratios, high Reynolds numbers, and complex solid boundaries. We highlight the advantages of our solver through various challenging simulation results that capture intricate and turbulent air-water interaction, including comparisons to previous work and real footage.

Skip Supplemental Material Section

Supplemental Material

114-477-supp-video.mp4

supplemental material

3528223.3530132.mp4

presentation

References

  1. Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis. 2017. Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids. ACM Trans. Graph. 36, 4 (2017), 140:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A stream function solver for liquid simulations. ACM Trans. Graph. 34, 4 (2015), 53:1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. 2016. Preserving geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM Trans. Graph. 35, 4, Article 97 (2016), 97:1--12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Yan Ba, Haihu Liu, Qing Li, Qinjun Kang, and Jinju Sun. 2016. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Physical Review E 94, 2 (2016), 023310:1--15.Google ScholarGoogle ScholarCross RefCross Ref
  5. Vittorio E Badalassi, Hector D Ceniceros, and Sanjoy Banerjee. 2003. Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 2 (2003), 371--397.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and Matthias Teschner. 2018. Pressure Boundaries for Implicit Incompressible SPH. ACM Trans. Graph. 37, 2 (2018), 14:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Christopher Batty and Robert Bridson. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Symposium on Computer Animation. 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jan Bender and Dan Koschier. 2016. Divergence-free SPH for incompressible and viscous fluids. IEEE Trans. Vis. & Comp. Graph. 23, 3 (2016), 1193--1206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Prabhu Lal Bhatnagar, Eugene P. Gross, and Max Krook. 1954. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 94, 3 (1954), 511--525.Google ScholarGoogle Scholar
  10. Morten Bojsen-Hansen and Chris Wojtan. 2013. Liquid surface tracking with error compensation. ACM Trans. Graph. 32, 4 (2013), 79:1--79:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Morten Bojsen-Hansen and Chris Wojtan. 2016. Generalized Non-reflecting Boundaries for Fluid Re-simulation. ACM Trans. Graph. 35, 4 (July 2016), 96:1--96:7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Landon Boyd and Robert Bridson. 2012. MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graph. 31, 2, Article 16 (2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Oleksiy Busaryev, Tamal K. Dey, Huamin Wang, and Zhong Ren. 2012. Animating bubble interactions in a liquid foam. ACM Trans. Graph. 31, 4 (2012), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chaos. 2022. V-Ray renderer. (2022). https://www.chaos.com/Google ScholarGoogle Scholar
  15. Yixin Chen, Wei Li, Rui Fan, and Xiaopei Liu. 2021. GPU Optimization for High-Quality Kinetic Fluid Simulation. IEEE Trans. Vis. & Comp. Graph. Preprint (2021).Google ScholarGoogle ScholarCross RefCross Ref
  16. Yi-Lu Chen, Jonathan Meier, Barbara Solenthaler, and Vinicius C Azevedo. 2020. An extended cut-cell method for sub-grid liquids tracking with surface tension. ACM Trans. Graph. 39, 6 (2020), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Nuttapong Chentanez, Matthias Müller, Miles Macklin, and Tae-Yong Kim. 2015. Fast grid-free surface tracking. ACM Trans. Graph. 34, 4 (2015), 48:1--48:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sergio Chibbaro, Giacomo Falcucci, Giancarlo Chiatti, Hudong Chen, Xiaowen Shan, and Sauro Succi. 2008. Lattice Boltzmann models for nonideal fluids with arrested phase-separation. Physical Review E 77, 3 (2008), 036705.Google ScholarGoogle ScholarCross RefCross Ref
  19. Jonathan Chin. 2002. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360, 1792 (2002), 547--558.Google ScholarGoogle Scholar
  20. Junghyun Cho and Hyeong-Seok Ko. 2013. Geometry-Aware Volume-of-Fluid Method. In Computer Graphics Forum, Vol. 32. 379--388.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jens Cornels, Markus Ihmsen, Andreas Peer, and Matthias Teschner. 2014. IISPH-FLIP for incompressible fluids. Computer Graphics Forum 33, 2 (2014), 255--262.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-only liquids. ACM Trans. Graph. 35, 4 (2016), 78:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun. 2015. Power particles: an incompressible fluid solver based on power diagrams. ACM Trans. Graph. 34, 4 (2015), 50:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Alessandro De Rosis and Christophe Coreixas. 2020. Multiphysics flow simulations using D3Q19 lattice Boltzmann methods based on central moments. Physics of Fluids 32, 11 (2020), 117101.Google ScholarGoogle ScholarCross RefCross Ref
  25. Alessandro De Rosis and Enatri Enan. 2021. A three-dimensional phase-field lattice Boltzmann method for incompressible two-components flows. Physics of Fluids 33, 4 (2021), 043315.Google ScholarGoogle ScholarCross RefCross Ref
  26. Alessandro De Rosis, Rongzong Huang, and Christophe Coreixas. 2019. Universal formulation of central-moments-based lattice Boltzmann method with external forcing for the simulation of multiphysics phenomena. Physics of Fluids 31, 11 (2019), 117102.Google ScholarGoogle ScholarCross RefCross Ref
  27. Mathieu Desbrun and Marie-Paule Cani-Gascuel. 1998. Active Implicit Surface for Animation. In Graphics Interface. 143--150.Google ScholarGoogle Scholar
  28. Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed Particles: A new paradigm for animating highly deformable bodies. In Comp. Anim. and Sim. 61--76.Google ScholarGoogle Scholar
  29. Douglas Enright, Frank Losasso, and Ron Fedkiw. 2005. A fast and accurate semi-Lagrangian particle level set method. Comput. & Structures 83, 6--7 (2005), 479--490.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Douglas Enright, Steve Marschner, and Ron Fedkiw. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3 (2002), 736--744.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Abbas Fakhari and Diogo Bolster. 2017. Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios. J. Comput. Phys. 334 (2017), 620--638.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Abbas Fakhari, Diogo Bolster, and Li-Shi Luo. 2017a. A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades. J. Comput. Phys. 341 (2017), 22--43.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Abbas Fakhari, Martin Geier, and Diogo Bolster. 2019. A simple phase-field model for interface tracking in three dimensions. Computers & Mathematics with Applications 78, 4 (2019), 1154--1165.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Abbas Fakhari, Travis Mitchell, Christopher Leonardi, and Diogo Bolster. 2017b. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios. Physical Review E 96, 5 (2017), 053301.Google ScholarGoogle ScholarCross RefCross Ref
  35. Giacomo Falcucci, Gino Bella, Giancarlo Chiatti, Sergio Chibbaro, Mauro Sbragaglia, Sauro Succi, et al. 2007. Lattice Boltzmann models with mid-range interactions. Communications in Computational Physics 2, 6 (2007), 1071--1084.Google ScholarGoogle Scholar
  36. Giacomo Falcucci, Stefano Ubertini, Chiara Biscarini, Silvia Di Francesco, Daniele Chiappini, Silvia Palpacelli, Alessandro De Maio, and Sauro Succi. 2011. Lattice Boltzmann methods for multiphase flow simulations across scales. Communications in Computational Physics 9, 2 (2011), 269--296.Google ScholarGoogle ScholarCross RefCross Ref
  37. Olga Filippova and Dieter Hänel. 1998. Grid refinement for lattice-BGK models. Journal of Computational physics 147, 1 (1998), 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Nick Foster and Ronald Fedkiw. 2001. Practical animation of liquids. In Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH). 23--30.Google ScholarGoogle ScholarCross RefCross Ref
  39. Nick Foster and Demetri Metaxas. 1996. Realistic animation of liquids. Graphical Models and Image Processing 58 (1996), 471--493.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A polynomial Particle-In-Cell method. ACM Trans. Graph. 36, 6 (2017), 222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis, and Chenfanfu Jiang. 2018. Animating fluid sediment mixture in particle-laden flows. ACM Trans. Graph. 37, 4 (2018), 149:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Martin Geier, Abbas Fakhari, and Taehun Lee. 2015. Conservative phase-field lattice Boltzmann model for interface tracking equation. Physical Review E 91, 6 (2015), 063309:1--11.Google ScholarGoogle ScholarCross RefCross Ref
  43. Sebastian Geller, Sonja Uphoff, and Manfred Krafczyk. 2013. Turbulent jet computations based on MRT and Cascaded Lattice Boltzmann models. Computers & Mathematics with Applications 65, 12 (2013), 1956--1966.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Ryan Goldade, Mridul Aanjaneya, and Christopher Batty. 2020. Constraint bubbles and affine regions: reduced fluid models for efficient immersed bubbles and flexible spatial coarsening. ACM Trans. Graph. 39, 4 (2020), 43--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Daryl Grunau, Shiyi Chen, and Kenneth Eggert. 1993. A lattice Boltzmann model for multiphase fluid flows. Physics of Fluids A: Fluid Dynamics 5, 10 (1993), 2557--2562.Google ScholarGoogle ScholarCross RefCross Ref
  46. G Gruszczyński, Travis Mitchell, Christopher Leonardi, and Tracie Barber. 2020. A cascaded phase-field lattice Boltzmann model for the simulation of incompressible, immiscible fluids with high density contrast. Computers & Mathematics with Applications 79, 4 (2020), 1049--1071.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Andrew K. Gunstensen, Daniel H. Rothman, Stéphane Zaleski, and Gianluigi Zanetti. 1991. Lattice Boltzmann model of immiscible fluids. Physical Review A 43, 8 (1991), 4320--4327.Google ScholarGoogle ScholarCross RefCross Ref
  48. Yulong Guo, Xiaopei Liu, and Xuemao Xu. 2017. A unified detail-preserving liquid simulation by two-phase lattice Boltzmann modeling. IEEE Trans. Vis. & Comp.Graph. 23, 5 (2017), 1479--1491.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Xiaoyi He, Shiyi Chen, and Gary D Doolen. 1998. A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 1 (1998), 282--300.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Xiaoyi He, Raoyang Zhang, Shiyi Chen, and Gary D Doolen. 1999. On the three-dimensional Rayleigh-Taylor instability. Physics of Fluids 11, 5 (1999), 1143--1152.Google ScholarGoogle ScholarCross RefCross Ref
  51. Nambin Heo and Hyeong-Seok Ko. 2010. Detail-preserving fully-Eulerian interface tracking framework. ACM Trans. Graph. 29, 6 (2010), 176:1--176:8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. David J. Holdych, Dimitrios Rovas, John G. Georgiadis, and Richard O. Buckius. 1998. An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models. International Journal of Modern Physics C 9, 08 (1998), 1393--1404.Google ScholarGoogle ScholarCross RefCross Ref
  53. Jeong-Mo Hong and Chang-Hun Kim. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3 (2005), 915--920.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yang Hu, Decai Li, and Qiang He. 2020. Generalized conservative phase field model and its lattice Boltzmann scheme for multicomponent multiphase flows. International Journal of Multiphase Flow 132 (2020), 103432.Google ScholarGoogle ScholarCross RefCross Ref
  55. Takaji Inamuro, Nobuharu Konishi, and Fumimaru Ogino. 2000. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Computer Physics Communications 129, 1--3 (2000), 32--45.Google ScholarGoogle ScholarCross RefCross Ref
  56. David Jacqmin. 1999. Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling. J. Comput. Phys. 155, 1 (1999), 96--127.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Alexandros N. Kalarakis, Vasilis N. Burganos, and Alkiviades C. Payatakes. 2002. Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics. Physical Review E 65, 5 (2002), 056702.Google ScholarGoogle ScholarCross RefCross Ref
  58. Myungjoo Kang, Ronald P Fedkiw, and Xu-Dong Liu. 2000. A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing 15, 3 (2000), 323--360.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Qinjun Kang, Dongxiao Zhang, and Shiyi Chen. 2004. Immiscible displacement in a channel: simulations of fingering in two dimensions. Advances in Water Resources 27, 1 (2004), 13--22.Google ScholarGoogle ScholarCross RefCross Ref
  60. Po-Hao Kao and Ruey-Jen Yang. 2008. An investigation into curved and moving boundary treatments in the lattice Boltzmann method. J. Comput. Phys. 227, 11 (2008), 5671--5690.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Vivien M Kendon, Michael E Cates, Ignacio Pagonabarraga, J-C Desplat, and Peter Bladon. 2001. Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study. Journal of Fluid Mechanics 440 (2001), 147--203.Google ScholarGoogle ScholarCross RefCross Ref
  62. Byungmoon Kim. 2010. Multi-phase fluid simulations using regional level sets. ACM Trans. Graph. 29, 6 (2010), 175:1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3 (2007), 98.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Doyub Kim, Oh-Young Song, and Hyeong-Seok Ko. 2010. A Practical Simulation of Dispersed Bubble Flow. ACM Trans. Graph. 29, 4 (2010), 70:1--5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Theodore Kim, Jerry Tessendorf, and Jils Thurey. 2013. Closest point turbulence for liquid surfaces. ACM Trans. Graph. 32, 2 (2013), 15:1--15:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Dan Koschier and Jan Bender. 2017. Density Maps for Improved SPH Boundary Handling. In Symposium on Computer Animation. Article 1.Google ScholarGoogle Scholar
  67. E. Dinesh Kumar, Sannasi Annamalaisamy Sannasiraj, and Vallam Sundar. 2019. Phase field lattice Boltzmann model for air-water two phase flows. Physics of Fluids 31, 7 (2019), 072103.Google ScholarGoogle ScholarCross RefCross Ref
  68. Anthony J. C. Ladd. 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics 271 (1994), 285--309.Google ScholarGoogle ScholarCross RefCross Ref
  69. Timothy R. Langlois, Changxi Zheng, and Doug L. James. 2016. Toward Animating Water with Complex Acoustic Bubbles. ACM Trans. Graph. 35, 4 (2016), 95:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Jonas Latt. 2007a. Hydrodynamic limit of lattice Boltzmann equations. Ph.D. Dissertation. University of Geneva.Google ScholarGoogle Scholar
  71. Jonas Latt. 2007b. Technical report: How to implement your DdQq dynamics with only q variables per node (instead of 2q). Tufts University (2007), 1--8.Google ScholarGoogle Scholar
  72. Sébastien Leclaire, Marcelo Reggio, and Jean-Yves Trépanier. 2011. Isotropic color gradient for simulating very high-density ratios with a two-phase flow lattice Boltzmann model. Computers & Fluids 48, 1 (2011), 98--112.Google ScholarGoogle ScholarCross RefCross Ref
  73. Hyun Geun Lee and Junseok Kim. 2013. Numerical simulation of the three-dimensional Rayleigh-Taylor instability. Computers & Mathematics with Applications 66, 8 (2013), 1466--1474.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Taehun Lee and Ching-Long Lin. 2005. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206, 1 (2005), 16--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Qing Li, Kaihong Luo, YJ Gao, and YL He. 2012. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Physical Review E 85, 2 (2012), 026704.Google ScholarGoogle ScholarCross RefCross Ref
  76. Wei Li, Kai Bai, and Xiaopei Liu. 2019. Continuous-Scale Kinetic Fluid Simulation. IEEE Transactions on Visualization and Computer Graphics 25, 9 (2019), 2694--2709. Google ScholarGoogle ScholarCross RefCross Ref
  77. Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2020. Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling. ACM Trans. Graph. 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Wei Li, Daoming Liu, Mathieu Desbrun, Jin Huang, and Xiaopei Liu. 2021. Kinetic-Based Multiphase Flow Simulation. IEEE Trans. Vis. & Comp. Graph. 27, 7 (2021), 3318--3334.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Hong Liang, Jiangrong Xu, Jiangxing Chen, Huili Wang, Zhenhua Chai, and Baochang Shi. 2018. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows. Physical Review E 97, 3 (2018), 033309.Google ScholarGoogle ScholarCross RefCross Ref
  80. Frank Losasso, Frederic Gibou, and Ron Fedkiw. 2004. Simulating water and smoke with an octree data structure. In ACM Trans. Graph. 457--462.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3 (2006), 812--819.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Daniel Lycett-Brown, Kai H. Luo, Ronghou Liu, and Pengmei Lv. 2014. Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method. Physics of Fluids 26 (2014), 023303:1--26.Google ScholarGoogle Scholar
  83. Chaoyang Lyu, Wei Li, Mathieu Desbrun, and Xiaopei Liu. 2021. Fast and versatile fluid-solid coupling for turbulent flow simulation. ACM Trans. Graph. 40, 6 (2021), 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Michael E McCracken and John Abraham. 2005. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Physical Review E 71, 3 (2005), 036701.Google ScholarGoogle ScholarCross RefCross Ref
  85. Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. 2004. Animation and Control of Breaking Waves. In Symposium on Computer Animation. 315--324.Google ScholarGoogle Scholar
  86. Viorel Mihalef, Betul Unlusu, Dimitris Metaxas, Mark Sussman, and M Yousuff Hussaini. 2006. Physics based boiling simulation. In Symposium on Computer Animation. 317--324.Google ScholarGoogle Scholar
  87. Marek Krzysztof Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund, Brian Bunch Christensen, Jakob Andreas Bærentzen, and Robert Bridson. 2013. Multiphase flow of immiscible fluids on unstructured moving meshes. IEEE Trans. Vis. & Comp. Graph. 20, 1 (2013), 4--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Shiladitya Mukherjee and John Abraham. 2007a. Lattice Boltzmann simulations of two-phase flow with high density ratio in axially symmetric geometry. Physical Review E 75, 2 (2007), 026701.Google ScholarGoogle ScholarCross RefCross Ref
  89. Shiladitya Mukherjee and John Abraham. 2007b. A pressure-evolution-based multi-relaxation-time high-density-ratio two-phase lattice-Boltzmann model. Computers & Fluids 36, 6 (2007), 1149--1158.Google ScholarGoogle ScholarCross RefCross Ref
  90. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation. 154--159.Google ScholarGoogle Scholar
  91. Seyed Nabavizadeh, Mohsen Eshraghi, and Sergio Felicelli. 2018. A Comparative Study of Multiphase Lattice Boltzmann Methods for Bubble-Dendrite Interaction during Solidification of Alloys. Appl. Sci. 9, 1 (2018), 57:1--24.Google ScholarGoogle Scholar
  92. Xiao-Dong Niu, You Li, Yi-Ren Ma, Mu-Feng Chen, Xiang Li, and Qiao-Zhong Li. 2018. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows. Physics of Fluids 30, 1 (2018), 013302:1--13.Google ScholarGoogle Scholar
  93. Enzo Orlandini, Michael R Swift, and JM Yeomans. 1995. A lattice Boltzmann model of binary-fluid mixtures. Euro-Physics Letters 32, 6 (1995), 463.Google ScholarGoogle ScholarCross RefCross Ref
  94. Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics. In Symp. Comp. Anim. 105--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Saket Patkar and Parag Chaudhuri. 2013. Wetting of Porous Solids. IEEE Trans. Vis. & Comp. Graph. 19, 9 (2013), 1592--1604.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Bo Ren, Chenfeng Li, Xiao Yan, Ming C Lin, Javier Bonet, and Shi-Min Hu. 2014. Multiple-fluid SPH simulation using a mixture model. ACM Trans. Graph. 33, 5 (2014), 171:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Shimpei Saito, Alessandro De Rosis, Alessio Festuccia, Akiko Kaneko, Yutaka Abe, and Kazuya Koyama. 2018. Color-gradient lattice Boltzmann model with nonorthogonal central moments: Hydrodynamic melt-jet breakup simulations. Physical Review E 98, 1 (2018), 013305.Google ScholarGoogle ScholarCross RefCross Ref
  98. Robert Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Science Advances 2, 6 (2016), e1501869.Google ScholarGoogle ScholarCross RefCross Ref
  99. Robert Saye. 2017. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I. J. Comput. Phys. 344 (2017), 647--682.Google ScholarGoogle ScholarCross RefCross Ref
  100. Mauro Sbragaglia, Roberto Benzi, Luca Biferale, Sauro Succi, Kazu Sugiyama, and Federico Toschi. 2007. Generalized lattice Boltzmann method with multirange pseudopotential. Physical Review E 75, 2 (2007), 026702.Google ScholarGoogle ScholarCross RefCross Ref
  101. Hagit Schechter and Robert Bridson. 2012. Ghost SPH for Animating Water. ACM Trans. Graph. 31, 4 (2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Xiaowen Shan and Hudong Chen. 1993. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical review E 47, 3 (1993), 1815.Google ScholarGoogle Scholar
  103. Xiaowen Shan and Hudong Chen. 1994. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Physical Review E 49, 4 (1994), 2941.Google ScholarGoogle ScholarCross RefCross Ref
  104. J.Y. Shao, C. Shu, H.B. Huang, and Y.T. Chew. 2014. Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Physical Review E 89, 3 (2014), 033309:1--14.Google ScholarGoogle ScholarCross RefCross Ref
  105. Barbara Solenthaler and Renato Pajarola. 2008. Density Contrast SPH Interfaces. In Symposium on Computer Animation. 211--218.Google ScholarGoogle Scholar
  106. Barbara Solenthaler and Renato Pajarola. 2009. Predictive-Corrective incompressible SPH. ACM Trans. Graph. 28, 3 (2009), 40:1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Oh-Young Song, Hyuncheol Shin, and Hyeong-Seok Ko. 2005. Stable but nondissipative water. ACM Trans. Graph. 24, 1 (2005), 81--97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Haozhe Su, Tao Xue, Chengguizi Han, Chenfanfu Jiang, and Mridul Aanjaneya. 2021. A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase change. ACM Trans. Graph. 40, 4 (2021), 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Kazuhiko Suga, Yoshiaki Kuwata, K Takashima, and R Chikasue. 2015. A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Computers & Mathematics with Applications 69, 6 (2015), 518--529.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Michael R Swift, E Orlandini, WR Osborn, and JM Yeomans. 1996. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E 54, 5 (1996), 5041.Google ScholarGoogle ScholarCross RefCross Ref
  111. Michael R Swift, WR Osborn, and JM Yeomans. 1995. Lattice Boltzmann simulation of nonideal fluids. Physical Review Letters 75, 5 (1995), 830--833.Google ScholarGoogle ScholarCross RefCross Ref
  112. Nils Thuerey, Filip Sadlo, Simon Schirm, Matthias Müller-Fischer, and Markus Gross. 2007. Real-time simulations of bubbles and foam within a shallow water framework. In Symposium on Computer Animation. 191--198.Google ScholarGoogle Scholar
  113. H.L. Wang, Z.H. Chai, B.C. Shi, and H. Liang. 2016. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Physical Review E 94, 3 (2016), 033304.Google ScholarGoogle ScholarCross RefCross Ref
  114. Chris Wojtan, Matthias Müller-Fischer, and Tyson Brochu. 2011. Liquid simulation with mesh-based surface tracking. ACM SIGGRAPH Course Notes (2011).Google ScholarGoogle Scholar
  115. Xiao Yan, Yun-Tao Jiang, Chenfeng Li, Ralph R. Martin, and Shi-Min Hu. 2016. Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. 35, 4, Article 79 (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu. 2021. Clebsch gauge fluid. ACM Trans. Graph. 40, 4 (2021), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Tao Yang, Jian Chang, Ming C. Lin, Ralph R. Martin, Jian J. Zhang, and Shi min Hu. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graph. 36, 6 (2017), 224:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Xuewen Yin and Junfeng Zhang. 2012. An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. J. Comput. Phys. 231, 11 (2012), 4295--4303.Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Trans. Graph. 34, 5 (2015), 160:1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Fan Zhang, Xiong Zhang, Kam Yim Sze, Yanping Lian, and Yan Liu. 2017. Incompressible material point method for free surface flow. J. Comput. Phys. 330 (2017), 92--110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Yizhong Zhang, Huamin Wang, Shuai Wang, Yiying Tong, and Kun Zhou. 2012. A Deformable Surface Model for Real-Time Water Drop Animation. IEEE Trans. Vis. & Comp. Graph. 18, 8 (2012), 1281--1289.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. HW Zheng, Chang Shu, and Yong-Tian Chew. 2006. A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 218, 1 (2006), 353--371.Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2009. Simulation of bubbles. Graphical Models 71, 6 (2009), 229--239.Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (2005), 965--972.Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Yingqing Zu and Shuisheng He. 2013. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Physical Review E 87, 4 (2013), 043301.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Efficient kinetic simulation of two-phase flows

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader