Abstract
Solving partial differential equations (PDEs) on geometric domains is an important component of computer graphics, geometry processing, and many other fields. Typically, the given discrete mesh is the geometric representation and should not be altered for simulation purposes. Hence, accurately solving PDEs on general meshes is a central goal and has been considered for various differential operators over the last years. While it is known that using higher-order basis functions on simplicial meshes can substantially improve accuracy and convergence, extending these benefits to general surface or volume tessellations in an efficient fashion remains an open problem. Our work proposes variationally optimized piecewise quadratic shape functions for polygons and polyhedra, which generalize quadratic P2 elements, exactly reproduce them on simplices, and inherit their beneficial numerical properties. To mitigate the associated cost of increased computation time, particularly for volumetric meshes, we introduce a custom two-level multigrid solver which significantly improves computational performance.
Supplemental Material
Available for Download
- Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal Meshes. ACM Transactions on Graphics 30, 4 (2011), 102:1--102:10.Google Scholar
Digital Library
- Prusty Aurojyoti, Piska Raghu, Amirtham Rajagopal, and Jn Reddy. 2019. An n-sided polygonal finite element for nonlocal nonlinear analysis of plates and laminates. Internat. J. Numer. Methods Engrg. 120 (2019), 1071--1107.Google Scholar
Cross Ref
- Lourenço Beirão da Veiga, Franco Brezzi, Andrea Cangiani, Gianmarco Manzini, Luisa Donatella Marini, and Alessandro Russo. 2013b. Basic principles of Virtual Element Methods. Mathematical Models and Methods in Applied Sciences 23, 1 (2013), 199--214.Google Scholar
Cross Ref
- Lourenço Beirão da Veiga, Franco Brezzi, and Luisa Donatella Marini. 2013a. Virtual Elements for Linear Elasticity Problems. SIAM J. Numer. Anal. 51, 2 (2013), 794--812.Google Scholar
Digital Library
- Lourenço Beirão da Veiga, Franco Dassi, and Alessandro Russo. 2017. High-order Virtual Element Method on polyhedral meshes. Computers and Mathematics with Applications 74 (2017), 1110--1122.Google Scholar
Digital Library
- J.E. Bishop. 2014. A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Internat. J. Numer. Methods Engrg. 97 (2014), 1--31.Google Scholar
Cross Ref
- Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini. 2005. A Family of Mimetic Finite Difference Methods on Polygonal and Polyhedral Meshes. Mathematical Models and Methods in Applied Sciences 15, 10 (2005), 1533--1551.Google Scholar
Cross Ref
- Astrid Bunge, Mario Botsch, and Marc Alexa. 2021. The Diamond Laplace for Polygonal and Polyhedral Meshes. Computer Graphics Forum 40, 5 (2021), 217--230.Google Scholar
Cross Ref
- Astrid Bunge, Philipp Herholz, Misha Kazhdan, and Mario Botsch. 2020. Polygon Laplacian Made Simple. Computer Graphics Forum 39, 2 (2020), 303--313.Google Scholar
Cross Ref
- Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3 (2008), 1--14.Google Scholar
Digital Library
- U. Clarenz, U. Diewald, and M. Rumpf. [n.d.]. Anisotropic geometric diffusion in surface processing. In Proceedings Visualization 2000. 397--405.Google Scholar
- Yves Coudière and Florence Hubert. 2011. A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations. SIAM J. Sci. Comput. 33, 4 (2011), 1739--1764.Google Scholar
Digital Library
- Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Transactions on Graphics 32, 5 (2013), 152:1--152:11.Google Scholar
Digital Library
- Fernando de Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete Differential Operators on Polygonal Meshes. ACM Transactions on Graphics 39, 4 (2020), 110:1--110:14.Google Scholar
Digital Library
- Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision Exterior Calculus for Geometry Processing. ACM Transactions on Graphics 35, 4 (2016), 133:1--133:11.Google Scholar
Digital Library
- Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of ACM SIGGRAPH. 317--324.Google Scholar
- Gerhard Dziuk. 1988. Finite Elements for the Beltrami operator on arbitrary surfaces. Springer Berlin Heidelberg, 142--155.Google Scholar
- Michael S. Floater. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1 (2003), 19--27.Google Scholar
Digital Library
- Richard Franke. 1979. A critical comparison of some methods for interpolation of scattered data. Technical Report. Naval Postgraduate School.Google Scholar
- Xifeng Gao, Daniele Panozzo, Wenping Wang, Zhigang Deng, and Guoning Chen. 2017. Robust Structure Simplification for Hex Re-Meshing. ACM Transactions on Graphics 36, 6 (2017), 185:1--185:13.Google Scholar
Digital Library
- Andrew Gillette, Alexander Rand, and Chandrajit Bajaj. 2016. Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes. Computational Methods in Applied Mathematics 16, 4 (2016), 667--683.Google Scholar
Cross Ref
- F. Hermeline. 2009. A Finite Volume Method for Approximating 3D Diffusion Operators on General Meshes. J. Comput. Phys. 228, 16 (2009), 5763--5786.Google Scholar
Digital Library
- K. Hormann and N. Sukumar. 2008. Maximum Entropy Coordinates for Arbitrary Polytopes. Computer Graphics Forum 27, 5 (2008), 1513--1520.Google Scholar
Digital Library
- Kai Hormann and N. Sukumar. 2017. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. Taylor & Francis.Google Scholar
- Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic Coordinates for Character Articulation. ACM Transactions on Graphics 26, 3 (2007), 71-es.Google Scholar
Digital Library
- Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed Triangular Meshes. ACM Transactions on Graphics 24, 3 (2005), 561--566.Google Scholar
Digital Library
- Torsten Langer and Hans-Peter Seidel. 2008. Higher Order Barycentric Coordinates. Computer Graphics Forum 27, 2 (2008).Google Scholar
- Andreas Longva, Fabian Löschner, Tassilo Kugelstadt, José Antonio Fernández-Fernández, and Jan Bender. 2020. Higher-Order Finite Elements for Embedded Simulation. ACM Transactions on Graphics 39, 6 (2020), 181:1--181:14.Google Scholar
Digital Library
- G. Manzini, A. Russo, and N. Sukumar. 2014. New perspectives on polygonal and polyhedral finite element methods. Mathematical Models and Methods in Applied Sciences 24 (2014), 1665--1699.Google Scholar
Cross Ref
- Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross. 2008. Polyhedral Finite Elements Using Harmonic Basis Functions. Computer Graphics Forum 27, 5 (2008), 1521--1529.Google Scholar
Digital Library
- Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2008. Interactive Physically-Based Shape Editing. In Proceedings of ACM Symposium on Solid and Physical Modeling. 79--89.Google Scholar
Digital Library
- Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2 (1993), 15--36.Google Scholar
Cross Ref
- Fabián Prada, Misha Kazhdan, Ming Chuang, and Hugues Hoppe. 2018. GradientDomain Processing within a Texture Atlas. ACM Transactions on Graphics 37, 4 (2018), 154:1--154:14.Google Scholar
Digital Library
- M. Rashid and M. Selimotic. 2006. A three-dimensional finite element method with arbitrary polyhedral elements. Internat. J. Numer. Methods Engrg. 67 (2006), 226 -- 252.Google Scholar
Cross Ref
- Teseo Schneider, Jérémie Dumas, Xifeng Gao, Mario Botsch, Daniele Panozzo, and Denis Zorin. 2019. Poly-Spline Finite-Element Method. ACM Transactions on Graphics 38, 3 (2019), 19:1--19:16.Google Scholar
Digital Library
- Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. ACM Transactions on Graphics 37, 6 (2018), 280:1--280:14.Google Scholar
Digital Library
- Teseo Schneider, Yixin Hu, Xifeng Gao, Jeremie Dumas, Denis Zorin, and Daniele Panozzo. 2022. A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Solving Elliptic PDEs with the Finite Element Method. ACM Transactions on Graphics 41, 3 (2022), 23:1--23:14.Google Scholar
Digital Library
- Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. The Vector Heat Method. ACM Transactions on Graphics 38, 3 (2019), 24:1--24:19.Google Scholar
Digital Library
- Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2016. Hexahedral-Dominant Meshing. ACM Transactions on Graphics 35, 5 (2016), 157:1--157:23.Google Scholar
Digital Library
- N. Sukumar. 2004. Construction of polygonal interpolants: A maximum entropy approach. Internat. J. Numer. Methods Engrg. (2004), 2159--2181.Google Scholar
- Alireza Tabarraei and N. Sukumar. 2006. Application of Polygonal Finite Elements in Linear Elasticity. International Journal of Computational Methods 03 (2006), 503--520.Google Scholar
Cross Ref
- Xu-hai Tang, Sheng-chuan Wu, Chao Zheng, and Jian-hai Zhang. 2009. A novel virtual node method for polygonal elements. Applied Mathematics and Mechanics 30, 10 (2009).Google Scholar
- Eugene L. Wachspress. 1975. A Rational Finite Element Basis. Academic Press.Google Scholar
- Wenping Wang and Yang Liu. 2010. A Note on Planar Hexagonal Meshes. In Nonlinear Computational Geometry, Ioannis Z. Emiris, Frank Sottile, and Thorsten Theobald (Eds.). Springer New York, 221--233.Google Scholar
- Martin Wicke, Mario Botsch, and Markus Gross. 2007. A Finite Element Method on Convex Polyhedra. Computer Graphics Forum 26, 3 (2007), 355--364.Google Scholar
Cross Ref
Index Terms
Variational quadratic shape functions for polygons and polyhedra
Recommendations
High-order Wachspress functions on convex polygons through computer algebra
AbstractThe finite element method stands out as a powerful tool for modelling engineering problems. They are particularly well suited thanks to adaptive discretization techniques involving mesh size (h) or polynomial degree (p) or a ...
Highlights- The finite element method is a powerful tool for engineering problems.
- In 2D, ...
A methodology for quadrilateral finite element mesh coarsening
High fidelity finite element modeling of continuum mechanics problems often requires using all quadrilateral or all hexahedral meshes. The efficiency of such models is often dependent upon the ability to adapt a mesh to the physics of the phenomena. ...
Discrete differential operators on polygonal meshes
Geometry processing of surface meshes relies heavily on the discretization of differential operators such as gradient, Laplacian, and covariant derivative. While a variety of discrete operators over triangulated meshes have been developed and used for ...





Comments