skip to main content
research-article
Open Access

Variational quadratic shape functions for polygons and polyhedra

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Solving partial differential equations (PDEs) on geometric domains is an important component of computer graphics, geometry processing, and many other fields. Typically, the given discrete mesh is the geometric representation and should not be altered for simulation purposes. Hence, accurately solving PDEs on general meshes is a central goal and has been considered for various differential operators over the last years. While it is known that using higher-order basis functions on simplicial meshes can substantially improve accuracy and convergence, extending these benefits to general surface or volume tessellations in an efficient fashion remains an open problem. Our work proposes variationally optimized piecewise quadratic shape functions for polygons and polyhedra, which generalize quadratic P2 elements, exactly reproduce them on simplices, and inherit their beneficial numerical properties. To mitigate the associated cost of increased computation time, particularly for volumetric meshes, we introduce a custom two-level multigrid solver which significantly improves computational performance.

Skip Supplemental Material Section

Supplemental Material

3528223.3530137.mp4

References

  1. Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal Meshes. ACM Transactions on Graphics 30, 4 (2011), 102:1--102:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Prusty Aurojyoti, Piska Raghu, Amirtham Rajagopal, and Jn Reddy. 2019. An n-sided polygonal finite element for nonlocal nonlinear analysis of plates and laminates. Internat. J. Numer. Methods Engrg. 120 (2019), 1071--1107.Google ScholarGoogle ScholarCross RefCross Ref
  3. Lourenço Beirão da Veiga, Franco Brezzi, Andrea Cangiani, Gianmarco Manzini, Luisa Donatella Marini, and Alessandro Russo. 2013b. Basic principles of Virtual Element Methods. Mathematical Models and Methods in Applied Sciences 23, 1 (2013), 199--214.Google ScholarGoogle ScholarCross RefCross Ref
  4. Lourenço Beirão da Veiga, Franco Brezzi, and Luisa Donatella Marini. 2013a. Virtual Elements for Linear Elasticity Problems. SIAM J. Numer. Anal. 51, 2 (2013), 794--812.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Lourenço Beirão da Veiga, Franco Dassi, and Alessandro Russo. 2017. High-order Virtual Element Method on polyhedral meshes. Computers and Mathematics with Applications 74 (2017), 1110--1122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J.E. Bishop. 2014. A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Internat. J. Numer. Methods Engrg. 97 (2014), 1--31.Google ScholarGoogle ScholarCross RefCross Ref
  7. Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini. 2005. A Family of Mimetic Finite Difference Methods on Polygonal and Polyhedral Meshes. Mathematical Models and Methods in Applied Sciences 15, 10 (2005), 1533--1551.Google ScholarGoogle ScholarCross RefCross Ref
  8. Astrid Bunge, Mario Botsch, and Marc Alexa. 2021. The Diamond Laplace for Polygonal and Polyhedral Meshes. Computer Graphics Forum 40, 5 (2021), 217--230.Google ScholarGoogle ScholarCross RefCross Ref
  9. Astrid Bunge, Philipp Herholz, Misha Kazhdan, and Mario Botsch. 2020. Polygon Laplacian Made Simple. Computer Graphics Forum 39, 2 (2020), 303--313.Google ScholarGoogle ScholarCross RefCross Ref
  10. Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3 (2008), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. U. Clarenz, U. Diewald, and M. Rumpf. [n.d.]. Anisotropic geometric diffusion in surface processing. In Proceedings Visualization 2000. 397--405.Google ScholarGoogle Scholar
  12. Yves Coudière and Florence Hubert. 2011. A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations. SIAM J. Sci. Comput. 33, 4 (2011), 1739--1764.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Transactions on Graphics 32, 5 (2013), 152:1--152:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fernando de Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete Differential Operators on Polygonal Meshes. ACM Transactions on Graphics 39, 4 (2020), 110:1--110:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision Exterior Calculus for Geometry Processing. ACM Transactions on Graphics 35, 4 (2016), 133:1--133:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of ACM SIGGRAPH. 317--324.Google ScholarGoogle Scholar
  17. Gerhard Dziuk. 1988. Finite Elements for the Beltrami operator on arbitrary surfaces. Springer Berlin Heidelberg, 142--155.Google ScholarGoogle Scholar
  18. Michael S. Floater. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1 (2003), 19--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Richard Franke. 1979. A critical comparison of some methods for interpolation of scattered data. Technical Report. Naval Postgraduate School.Google ScholarGoogle Scholar
  20. Xifeng Gao, Daniele Panozzo, Wenping Wang, Zhigang Deng, and Guoning Chen. 2017. Robust Structure Simplification for Hex Re-Meshing. ACM Transactions on Graphics 36, 6 (2017), 185:1--185:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Andrew Gillette, Alexander Rand, and Chandrajit Bajaj. 2016. Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes. Computational Methods in Applied Mathematics 16, 4 (2016), 667--683.Google ScholarGoogle ScholarCross RefCross Ref
  22. F. Hermeline. 2009. A Finite Volume Method for Approximating 3D Diffusion Operators on General Meshes. J. Comput. Phys. 228, 16 (2009), 5763--5786.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Hormann and N. Sukumar. 2008. Maximum Entropy Coordinates for Arbitrary Polytopes. Computer Graphics Forum 27, 5 (2008), 1513--1520.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kai Hormann and N. Sukumar. 2017. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. Taylor & Francis.Google ScholarGoogle Scholar
  25. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic Coordinates for Character Articulation. ACM Transactions on Graphics 26, 3 (2007), 71-es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed Triangular Meshes. ACM Transactions on Graphics 24, 3 (2005), 561--566.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Torsten Langer and Hans-Peter Seidel. 2008. Higher Order Barycentric Coordinates. Computer Graphics Forum 27, 2 (2008).Google ScholarGoogle Scholar
  28. Andreas Longva, Fabian Löschner, Tassilo Kugelstadt, José Antonio Fernández-Fernández, and Jan Bender. 2020. Higher-Order Finite Elements for Embedded Simulation. ACM Transactions on Graphics 39, 6 (2020), 181:1--181:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. G. Manzini, A. Russo, and N. Sukumar. 2014. New perspectives on polygonal and polyhedral finite element methods. Mathematical Models and Methods in Applied Sciences 24 (2014), 1665--1699.Google ScholarGoogle ScholarCross RefCross Ref
  30. Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross. 2008. Polyhedral Finite Elements Using Harmonic Basis Functions. Computer Graphics Forum 27, 5 (2008), 1521--1529.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2008. Interactive Physically-Based Shape Editing. In Proceedings of ACM Symposium on Solid and Physical Modeling. 79--89.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2 (1993), 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  33. Fabián Prada, Misha Kazhdan, Ming Chuang, and Hugues Hoppe. 2018. GradientDomain Processing within a Texture Atlas. ACM Transactions on Graphics 37, 4 (2018), 154:1--154:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Rashid and M. Selimotic. 2006. A three-dimensional finite element method with arbitrary polyhedral elements. Internat. J. Numer. Methods Engrg. 67 (2006), 226 -- 252.Google ScholarGoogle ScholarCross RefCross Ref
  35. Teseo Schneider, Jérémie Dumas, Xifeng Gao, Mario Botsch, Daniele Panozzo, and Denis Zorin. 2019. Poly-Spline Finite-Element Method. ACM Transactions on Graphics 38, 3 (2019), 19:1--19:16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. ACM Transactions on Graphics 37, 6 (2018), 280:1--280:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Teseo Schneider, Yixin Hu, Xifeng Gao, Jeremie Dumas, Denis Zorin, and Daniele Panozzo. 2022. A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Solving Elliptic PDEs with the Finite Element Method. ACM Transactions on Graphics 41, 3 (2022), 23:1--23:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. The Vector Heat Method. ACM Transactions on Graphics 38, 3 (2019), 24:1--24:19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2016. Hexahedral-Dominant Meshing. ACM Transactions on Graphics 35, 5 (2016), 157:1--157:23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. N. Sukumar. 2004. Construction of polygonal interpolants: A maximum entropy approach. Internat. J. Numer. Methods Engrg. (2004), 2159--2181.Google ScholarGoogle Scholar
  41. Alireza Tabarraei and N. Sukumar. 2006. Application of Polygonal Finite Elements in Linear Elasticity. International Journal of Computational Methods 03 (2006), 503--520.Google ScholarGoogle ScholarCross RefCross Ref
  42. Xu-hai Tang, Sheng-chuan Wu, Chao Zheng, and Jian-hai Zhang. 2009. A novel virtual node method for polygonal elements. Applied Mathematics and Mechanics 30, 10 (2009).Google ScholarGoogle Scholar
  43. Eugene L. Wachspress. 1975. A Rational Finite Element Basis. Academic Press.Google ScholarGoogle Scholar
  44. Wenping Wang and Yang Liu. 2010. A Note on Planar Hexagonal Meshes. In Nonlinear Computational Geometry, Ioannis Z. Emiris, Frank Sottile, and Thorsten Theobald (Eds.). Springer New York, 221--233.Google ScholarGoogle Scholar
  45. Martin Wicke, Mario Botsch, and Markus Gross. 2007. A Finite Element Method on Convex Polyhedra. Computer Graphics Forum 26, 3 (2007), 355--364.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Variational quadratic shape functions for polygons and polyhedra

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader