skip to main content
research-article
Public Access

Simulation and optimization of magnetoelastic thin shells

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Magnetoelastic thin shells exhibit great potential in realizing versatile functionalities through a broad range of combination of material stiffness, remnant magnetization intensity, and external magnetic stimuli. In this paper, we propose a novel computational method for forward simulation and inverse design of magnetoelastic thin shells. Our system consists of two key components of forward simulation and backward optimization. On the simulation side, we have developed a new continuum mechanics model based on the Kirchhoff-Love thin-shell model to characterize the behaviors of a megnetolelastic thin shell under external magnetic stimuli. Based on this model, we proposed an implicit numerical simulator facilitated by the magnetic energy Hessian to treat the elastic and magnetic stresses within a unified framework, which is versatile to incorporation with other thin shell models. On the optimization side, we have devised a new differentiable simulation framework equipped with an efficient adjoint formula to accommodate various PDE-constraint, inverse design problems of magnetoelastic thin-shell structures, in both static and dynamic settings. It also encompasses applications of magnetoelastic soft robots, functional Origami, artworks, and meta-material designs. We demonstrate the efficacy of our framework by designing and simulating a broad array of magnetoelastic thin-shell objects that manifest complicated interactions between magnetic fields, materials, and control policies.

Skip Supplemental Material Section

Supplemental Material

3528223.3530142.mp4

presentation

061-523-supp-video.mp4

supplemental material

References

  1. Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive editing of deformable simulations. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. Discrete Quadratic Curvature Energies. In ACM SIGGRAPH 2006 Courses (Boston, Massachusetts) (SIGGRAPH '06). Association for Computing Machinery, New York, NY, USA, 20--29.Google ScholarGoogle Scholar
  3. R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA '03). Eurographics Association, Goslar, DEU, 28--36.Google ScholarGoogle Scholar
  4. Jared T Bruton, Todd G Nelson, Trent K Zimmerman, Janette D Fernelius, Spencer P Magleby, and Larry L Howell. 2016. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags. Royal Society open science 3, 9 (2016), 160429.Google ScholarGoogle ScholarCross RefCross Ref
  5. Oleksiy Busaryev, Tamal K Dey, and Huamin Wang. 2013. Adaptive fracture simulation of multi-layered thin plates. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hsiao-Yu Chen, Arnav Sastry, Wim M. van Rees, and Etienne Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (jul 2018), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Zhen Chen, Hsiao-Yu Chen, Danny M. Kaufman, Mélina Skouras, and Etienne Vouga. 2021. Fine Wrinkling on Coarsely Meshed Thin Shells. ACM Trans. Graph. 40, 5, Article 190 (aug 2021), 32 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H Christopher Frey and Sumeet R Patil. 2002. Identification and review of sensitivity analysis methods. Risk analysis 22, 3 (2002), 553--578.Google ScholarGoogle Scholar
  9. Fehmi Cirak, Michael Ortiz, and Peter Schröder. 2000. Subdivision Surfaces: A New Paradigm For Thin-Shell Finite-Element Analysis. Internat. J. Numer. Methods Engrg. 47 (2000), 2039--2072.Google ScholarGoogle ScholarCross RefCross Ref
  10. Xiangxin Dang, Fan Feng, Paul Plucinsky, Richard D James, Huiling Duan, and Jianxiang Wang. 2022. Inverse design of deployable origami structures that approximate a general surface. International Journal of Solids and Structures 234 (2022), 111224.Google ScholarGoogle ScholarCross RefCross Ref
  11. A Dorfmann and RW2008258 Ogden. 2003. Magnetoelastic modelling of elastomers. European Journal of Mechanics-A/Solids 22, 4 (2003), 497--507.Google ScholarGoogle ScholarCross RefCross Ref
  12. Luis Dorfmann and Ray W. Ogden. 2014. Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, Heidelberg, Germany.Google ScholarGoogle Scholar
  13. Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans. Graph. 41, 2, Article 13 (Oct. 2021), 21 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Tao Du, Kui Wu, Andrew Spielberg, Wojciech Matusik, Bo Zhu, and Eftychios Sifakis. 2020. Functional Optimization of Fluidic Devices with Differentiable Stokes Flow. ACM Trans. Graph. 39, 6, Article 197 (Dec. 2020), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Levi H Dudte, Etienne Vouga, Tomohiro Tachi, and Lakshminarayanan Mahadevan. 2016. Programming curvature using origami tessellations. Nature materials 15, 5 (2016), 583--588.Google ScholarGoogle Scholar
  16. Mehdi Eshaghi, Mohsen Ghasemi, and Korosh Khorshidi. 2021. Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mechanics Letters 44 (2021), 101268.Google ScholarGoogle ScholarCross RefCross Ref
  17. C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. 2021. Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation. arXiv:2106.13281 [cs.RO]Google ScholarGoogle Scholar
  18. Daniel Garcia-Gonzalez. 2019. Magneto-visco-hyperelasticity for hard-magnetic soft materials: theory and numerical applications. Smart Materials and Structures 28, 8 (2019), 085020.Google ScholarGoogle ScholarCross RefCross Ref
  19. Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Niklaus Bacher, B. Thomaszewski, and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact. ACM Trans. Graph. 39 (2020), 190:1--190:15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ali Ghaffari, Seyed Hassan Hashemabadi, and Mansour Bazmi. 2015. CFD simulation of equilibrium shape and coalescence of ferrofluid droplets subjected to uniform magnetic field. Colloids and Surfaces A: Physicochemical and Engineering Aspects 481 (2015), 186--198.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yotam Gingold, Adrian Secord, Jefferson Y Han, Eitan Grinspun, and Denis Zorin. 2004. A discrete model for inelastic deformation of thin shells. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Grenoble, France). Eurographics Association, Goslar, DEU, 1--12.Google ScholarGoogle Scholar
  22. A.E. Green and P.M. Naghdi. 1968. The linear elastic cosserat surface and shell theory. International Journal of Solids and Structures 4, 6 (1968), 585--592.Google ScholarGoogle ScholarCross RefCross Ref
  23. Eitan Grinspun, Yotam Gingold, Jason Reisman, and Denis Zorin. 2006. Computing discrete shape operators on general meshes. Computer Graphics Forum 25, 3 (2006), 547--556.Google ScholarGoogle ScholarCross RefCross Ref
  24. Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA '03). Eurographics Association, Goslar, DEU, 62--67.Google ScholarGoogle Scholar
  25. Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, and Joseph Teran. 2018. A material point method for thin shells with frictional contact. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. David Hahn, Pol Banzet, James Bern, and Stelian Coros. 2019. Real2Sim: visco-elastic parameter estimation from dynamic motion. ACM Trans. Graph. 38 (11 2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. 2020. phiflow: A differentiable pde solving framework for deep learning via physical simulations. In Thirty-fourth Workshop on Neural Information Processing Systems. The Neural Information Processing Systems Foundation, Virtual, 1--5.Google ScholarGoogle Scholar
  28. Wenqi Hu, Guo Zhan Lum, Massimo Mastrangeli, and Metin Sitti. 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 7690 (2018), 81--85.Google ScholarGoogle Scholar
  29. Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019. ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, Montreal, Canada, 6265--6271.Google ScholarGoogle Scholar
  30. Libo Huang, Torsten Hädrich, and Dominik L. Michels. 2019. On the Accurate Large-scale Simulation of Ferrofluids. ACM Trans. Graph. 38, 4, Article 93 (July 2019), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Libo Huang and Dominik L. Michels. 2020. Surface-Only Ferrofluids. ACM Trans. Graph. 39, 6, Article 174 (Nov. 2020), 17 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tomokazu Ishikawa, Yonghao Yue, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2013. Visual Simulation of Magnetic Fluid Using a Procedural Approach for Spikes Shape. In Computer Vision, Imaging and Computer Graphics. Theory and Application. Springer Berlin Heidelberg, Berlin, Heidelberg, 112--126.Google ScholarGoogle Scholar
  33. Shunta Kashima, Fumikazu Miyasaka, and Katsuhiro Hirata. 2012. Novel soft actuator using magnetorheological elastomer. IEEE Transactions on magnetics 48, 4 (2012), 1649--1652.Google ScholarGoogle ScholarCross RefCross Ref
  34. Seung-wook Kim and JungHyun Han. 2020. Simulation of Arbitrarily-shaped Magnetic Objects. Computer Graphics Forum 39, 7 (2020), 119--130.Google ScholarGoogle ScholarCross RefCross Ref
  35. Seung-Wook Kim, Sun Young Park, and Junghyun Han. 2018. Magnetization Dynamics for Magnetic Object Interactions. ACM Trans. Graph. 37, 4, Article 121 (July 2018), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yoonho Kim, German A. Parada, Shengduo Liu, and Xuanhe Zhao. 2019. Ferromagnetic soft continuum robots. Science Robotics 4, 33 (2019), eaax7329.Google ScholarGoogle Scholar
  37. Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu Desbrun. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Advances in Neural Information Processing Systems, Vol. 32. Curran Associates, Inc., Vancouver, Canada.Google ScholarGoogle Scholar
  39. Ke Liu, Felix Hacker, and Chiara Daraio. 2021. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Science Robotics 6, 53 (2021), Art-No.Google ScholarGoogle Scholar
  40. Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse elastic shell design with contact and friction. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Pingchuan Ma, Tao Du, John Z Zhang, Kui Wu, Andrew Spielberg, Robert K Katzschmann, and Wojciech Matusik. 2021. DiffAqua: A Differentiable Computational Design Pipeline for Soft Underwater Swimmers with Shape Interpolation. ACM Transactions on Graphics (TOG) 40, 4 (2021), 132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. 37, 6, Article 241 (dec 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Pierre-Luc Manteaux, Wei-Lun Sun, François Faure, Marie-Paule Cani, and James F. O'Brien. 2015. Interactive Detailed Cutting of Thin Sheets. In Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games (Paris, France) (MIG '15). Association for Computing Machinery, New York, NY, USA, 125--132.Google ScholarGoogle Scholar
  44. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (jul 2010), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control Using the Adjoint Method. In ACM SIGGRAPH 2004 Papers (SIGGRAPH '04). Association for Computing Machinery, New York, NY, USA, 449--456.Google ScholarGoogle Scholar
  46. Sehee Min, Jungdam Won, Seunghwan Lee, Jungnam Park, and Jehee Lee. 2019. SoftCon. ACM Trans. Graph. 38 (2019), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Rahul Narain, Tobias Pfaff, and James F. O'Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4, Article 51 (jul 2013), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Rahul Narain, Armin Samii, and James F. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (nov 2012), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2020. A Level-Set Method for Magnetic Substance Simulation. ACM Trans. Graph. 39, 4, Article 29 (jul 2020), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Larissa S Novelino, Qiji Ze, Shuai Wu, Glaucio H Paulino, and Ruike Zhao. 2020. Untethered control of functional origami microrobots with distributed actuation. Proceedings of the National Academy of Sciences 117, 39 (2020), 24096--24101.Google ScholarGoogle ScholarCross RefCross Ref
  51. Zherong Pan and Dinesh Manocha. 2018. Active Animations of Reduced Deformable Models with Environment Interactions. ACM Trans. Graph. 37, 3, Article 36 (aug 2018), 17 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Siéfert, Benoît Roman, and Mark Pauly. 2021. Computational Inverse Design of Surface-Based Inflatables. ACM Trans. Graph. 40, 4, Article 40 (jul 2021), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (jul 2019), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational Design and Automated Fabrication of Kirchhoff-Plateau Surfaces. ACM Trans. Graph. 36, 4, Article 62 (jul 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Matteo Pezzulla, Dong Yan, and Pedro M. Reis. 2021. A geometrically exact model for thin magneto-elastic shells.Google ScholarGoogle Scholar
  56. Tobias Pfaff, Rahul Narain, Juan Miguel De Joya, and James F O'Brien. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 4 (2014), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2020. Scalable Differentiable Physics for Learning and Control. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119). PMLR, Virtual, 7847--7856.Google ScholarGoogle Scholar
  58. Olivier Rémillard and Paul G Kry. 2013. Embedded thin shells for wrinkle simulation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable Fluid Dynamics for Deep Neural Networks. In Proceedings of The 2nd Conference on Robot Learning (Proceedings of Machine Learning Research, Vol. 87). PMLR, Zrich, Switzerland, 317--335.Google ScholarGoogle Scholar
  60. Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt. 2014. Animating deformable objects using sparse spacetime constraints. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized yarn-level cloth. ACM Trans. Graph. 39, 4 (2020), 48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Yuchen Sun, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2021. A Material Point Method for Nonlinearly Magnetized Materials. ACM Trans. Graph. 40, 6, Article 205 (dec 2021), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Krister Svanberg. 2002. A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations. SIAM Journal on Optimization 12 (2002), 555--573.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Rasmus Tamstorf and Eitan Grinspun. 2013. Discrete Bending Forces and Their Jacobians. Graph. Models 75, 6 (nov 2013), 362--370.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically Deformable Models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '87). Association for Computing Machinery, New York, NY, USA, 205--214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Bernhard Thomaszewski, Andreas Gumann, Simon Pabst, and Wolfgang Straßer. 2008. Magnets in Motion. ACM Trans. Graph. 27, 5, Article 162 (Dec. 2008), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Wim M van Rees, Etienne Vouga, and Lakshminarayanan Mahadevan. 2017. Growth patterns for shape-shifting elastic bilayers. Proceedings of the National Academy of Sciences 114, 44 (2017), 11597--11602.Google ScholarGoogle ScholarCross RefCross Ref
  68. Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015. Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. 34, 4, Article 94 (jul 2015), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Liu Wang, Yoonho Kim, Chuan Fei Guo, and Xuanhe Zhao. 2020a. Hard-magnetic elastica. Journal of the Mechanics and Physics of Solids 142 (2020), 104045.Google ScholarGoogle ScholarCross RefCross Ref
  70. Weiming Wang, Dirk Munro, Charlie CL Wang, Fred van Keulen, and Jun Wu. 2020b. Space-time topology optimization for additive manufacturing. Structural and Multi-disciplinary Optimization 61, 1 (2020), 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen Liu. 2021. Fast and Feature-Complete Differentiable Physics Engine for Articulated Rigid Bodies with Contact Constraints. In Proceedings of Robotics: Science and Systems. The RSS Foundation, Virtual, 15.Google ScholarGoogle ScholarCross RefCross Ref
  72. Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '88). Association for Computing Machinery, New York, NY, USA, 159--168.Google ScholarGoogle Scholar
  73. Tianqi Xu, Jiachen Zhang, Mohammad Salehizadeh, Onaizah Onaizah, and Eric Diller. 2019. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Science Robotics 4, 29 (2019), eaav4494.Google ScholarGoogle Scholar
  74. Dong Yan, Matteo Pezzulla, Lilian Cruveiller, Arefeh Abbasi, and Pedro M Reis. 2021. Magneto-active elastic shells with tunable buckling strength. Nature communications 12, 1 (2021), 1--9.Google ScholarGoogle Scholar
  75. Yi Yang, Katherine Vella, and Douglas P Holmes. 2021. Grasping with kirigami shells. Science Robotics 6, 54 (2021), eabd6426.Google ScholarGoogle Scholar
  76. Ruike Zhao, Yoonho Kim, Shawn A. Chester, Pradeep Sharma, and Xuanhe Zhao. 2019. Mechanics of hard-magnetic soft materials. Journal of the Mechanics and Physics of Solids 124 (2019), 244--263.Google ScholarGoogle ScholarCross RefCross Ref
  77. Xuanhe Zhao, Jaeyun Kim, Christine A Cezar, Nathaniel Huebsch, Kangwon Lee, Kamal Bouhadir, and David J Mooney. 2011. Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences 108, 1 (2011), 67--72.Google ScholarGoogle ScholarCross RefCross Ref
  78. Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 5, Article 164 (jul 2017), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Yufeng Zhu, Robert Bridson, and Chen Greif. 2015. Simulating Rigid Body Fracture with Surface Meshes. ACM Trans. Graph. 34, 4, Article 150 (jul 2015), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Shannon A. Zirbel, Robert J. Lang, Mark W. Thomson, Deborah A. Sigel, Phillip E. Walkemeyer, Brian P. Trease, Spencer P. Magleby, and Larry L. Howell. 2013. Accommodating thickness in origami-based deployable arrays. Journal of Mechanical Design 135, 11 (2013), 11.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Simulation and optimization of magnetoelastic thin shells

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader