Abstract
One of the greatest challenges to mankind is understanding the underlying principles of climate change. Over the last years, the role of forests in climate change has received increased attention. This is due to the observation that not only the atmosphere has a principal impact on vegetation growth but also that vegetation is contributing to local variations of weather resulting in diverse microclimates. The interconnection of plant ecosystems and weather is described and studied as ecoclimates. In this work we take steps towards simulating ecoclimates by modeling the feedback loops between vegetation, soil, and atmosphere. In contrast to existing methods that only describe the climate at a global scale, our model aims at simulating local variations of climate. Specifically, we model tree growth interactively in response to gradients of water, temperature and light. As a result, we are able to capture a range of ecoclimate phenomena that have not been modeled before, including geomorphic controls, forest edge effects, the Foehn effect and spatial vegetation patterning. To validate the plausibility of our method we conduct a comparative analysis to studies from ecology and climatology. Consequently, our method advances the state-of-the-art of generating highly realistic outdoor landscapes of vegetation.
Supplemental Material
- R. P. Allan, M. Barlow, M. P. Byrne, A. Cherchi, H. Douville, H. J. Fowler, T. Y. Gan, A. G. Pendergrass, D. Rosenfeld, A. L. S. Swann, L. J. Wilcox, and O. Zolina. 2020. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N.Y. Acad. Sci. (2020).Google Scholar
- M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10--34.Google Scholar
- O. Argudo, C. Andújar, A. Chica, E. Guérin, J. Digne, A. Peytavie, and E. Galin. 2017. Coherent multi-layer landscape synthesis. The Visual Computer 33, 6 (2017), 1005--1015.Google Scholar
Digital Library
- R. Bastiaansen, A. Doelman, M. B. Eppinga, and M. Rietkerk. 2020. The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation. Ecology Letters 23, 3 (2020), 414--429.Google Scholar
Cross Ref
- B. Beneš, N. Andrysco, and O. Št'ava. 2009. Interactive Modeling of Virtual Ecosystems. In Proceedings of the Fifth Eurographics Conference on Natural Phenomena (NPH'09). Eurographics Association, Goslar, DEU, 9--16.Google Scholar
Digital Library
- E. Bertuzzo, F. Carrara, L. Mari, F. Altermatt, I. Rodriguez-Iturbe, and A. Rinaldo. 2016. Geomorphic controls on elevational gradients of species richness. 113, 7 (2016), 1737--1742.Google Scholar
- G. Bonan. 2015. Ecological Climatology: Concepts and Applications (3 ed.). Cambridge University Press.Google Scholar
Cross Ref
- A. Bouthors, F. Neyret, N. Max, E. Bruneton, and C. Crassin. 2008. Interactive Multiple Anisotropic Scattering in Clouds. In I3D (2008). 173--182.Google Scholar
- D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruction Synthesis of Dense Foliage. ACM Trans. Graph. 32, 4, Article 74 (2013), 74:1--74:10 pages.Google Scholar
Digital Library
- E. N. Broadbent, G. P. Asner, M. Keller, D. E. Knapp, P. J. C. Oliveira, and J. N. Silva. 2008. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation 141, 7 (2008), 1745 -- 1757.Google Scholar
Cross Ref
- E. Bruneton and F. Neyret. 2012. Real-time Realistic Rendering and Lighting of Forests. Comput. Graph. Forum 31, 2pt1 (2012), 373--382.Google Scholar
- E. Ch'ng. 2011. Realistic Placement of Plants for Virtual Environments. IEEE Comput. Graph. Appl. 31, 4 (2011), 66--77.Google Scholar
Digital Library
- G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and M.-P. Cani. 2017. Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation. ACM Trans. Graph. 36, 4, Article 134 (2017), 12 pages.Google Scholar
Digital Library
- J. Delgado, N. Arroyo, J. R. Arevalo, and J. Fernández-Palacios. 2007. Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landscape and Urban Planning (07 2007), 328--340.Google Scholar
- O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. 2002. Interactive Visualization of Complex Plant Ecosystems. VIS '02 (2002), 219--226.Google Scholar
Digital Library
- O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275--286.Google Scholar
- P. Ecormier-Nocca, G. Cordonnier, P. Carrez, A.-M. Moigne, P. Memari, B. Benes, and M.-P. Cani. 2021. Authoring Consistent Landscapes with Flora and Fauna. ACM Trans. Graph. 40, 4, Article 105 (2021), 13 pages.Google Scholar
Digital Library
- C. W. Ferreira Barbosa, Y. Dobashi, and T. Yamamoto. 2015. Adaptive Cloud Simulation Using Position Based Fluids. Comput. Animat. Virtual Worlds 26, 3--4 (2015), 367--375.Google Scholar
- J. Gain, H. Long, G. Cordonnier, and M.-P. Cani. 2017. EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems. Computer Graphics Forum 36, 2 (2017), 63--73.Google Scholar
Digital Library
- P. Goswami and F. Neyret. 2017. Real-Time Landscape-Size Convective Clouds Simulation and Rendering. In Proceedings of the 13th Workshop on Virtual Reality Interactions and Physical Simulations (VRIPHYS '17). Eurographics Association, 1--8.Google Scholar
- T. Hädrich, D. T. Banuti, W. Pałubicki, S. Pirk, and D. L. Michels. 2021. Fire in Paradise: Mesoscale Simulation of Wildfires. ACM Trans. Graph. 40, 4, Article 163 (2021).Google Scholar
Digital Library
- T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. CGF 36, 2 (2017), 49--61.Google Scholar
Digital Library
- T. Hädrich, M. Makowski, W. Pałubicki, D. Banuti, S. Pirk, and D. L. Michels. 2020. Stormscapes: Simulating Cloud Dynamics in the Now. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) (2020).Google Scholar
Digital Library
- M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. 2003. Simulation of Cloud Dynamics on Graphics Hardware. In ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS '03). Eurographics Association, 92--101.Google Scholar
- J. A. A. Herrera, T. Hädrich, W. Pałubicki, D. T. Banuti, S. Pirk, and D. L. Michels. 2021. Weatherscapes: Nowcasting Heat Transfer and Water Continuity. ACM Trans. Graph. 40, 6, Article 204 (2021), 19 pages.Google Scholar
Digital Library
- R. HilleRisLambers, M. Rietkerk, F. van den Bosch, H. H. T. Prins, and H. de Kroon. 2001. Vegetation Pattern Formation in Semi-Arid Grazing Systems. Ecology 82, 1 (2001), 50--61.Google Scholar
Cross Ref
- G. L. Horn, H. G. Ouwersloot, J. Vilà-Guerau de Arellano, and M. Sikma. 2015. Cloud Shading Effects on Characteristic Boundary-Layer Length Scales. Boundary-Layer Meteorology 157, 2 (01 Nov 2015), 237--263.Google Scholar
- T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling. Comp. Graph. Forum 25, 3 (2006), 617--624.Google Scholar
Cross Ref
- M. Jaeger and J. Teng. 2003. Tree and plant volume imaging - An introductive study towards voxelized functional landscapes. PMA (2003).Google Scholar
- K. Kapp, J. Gain, E. Guérin, E. Galin, and A. Peytavie. 2020. Data-driven Authoring of Large-scale Ecosystems. ACM Trans. Graph. (2020).Google Scholar
- E. Kessler. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulations. American Meteorological Society, Boston, MA, 1--84.Google Scholar
- M. Kovenock and A. L. S. Swann. 2018. Leaf Trait Acclimation Amplifies Simulated Climate Warming in Response to Elevated Carbon Dioxide. Global Biogeochemical Cycles 32, 10 (2018), 1437--1448.Google Scholar
Cross Ref
- P. K. Kundu, I. M. Cohen, and D. R. Dowling. 2012. Fluid Mechanics. Elsevier Science.Google Scholar
- B. Lane and P. Prusinkiewicz. 2002. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graphics Interface (2002), 69--80.Google Scholar
- B. Li, J. Kałużny, J. Klein, D. L. Michels, W. Pałubicki, B. Benes, and S. Pirk. 2021. Learning to Reconstruct Botanical Trees from Single Images. ACM Transaction on Graphics 40, 6, Article 231 (12 2021).Google Scholar
Digital Library
- C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. 2011. Modeling and Generating Moving Trees from Video. ACM Trans. Graph. 30, 6, Article 127 (2011), 127:1--127:12 pages.Google Scholar
Digital Library
- P. Liang, X. Wang, H. Sun, Y. Fan, Y. Wu, X. Lin, and J. Chang. 2019. Forest type and height are important in shaping the altitudinal change of radial growth response to climate change. Scientific Reports 9, 1 (2019), 1336.Google Scholar
Cross Ref
- B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (Jan. 1999), 56--65. Google Scholar
Digital Library
- Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texturelobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages.Google Scholar
Digital Library
- S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107--120.Google Scholar
Digital Library
- M. Makowski, T. Hädrich, J. Scheffczyk, D. L. Michels, S. Pirk, and W. Pałubicki. 2019. Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems. ACM Trans. Graph. 38, 4, Article 131 (2019), 14 pages.Google Scholar
Digital Library
- N. Maréchal, E. Guérin, E. Galin, S. Mérillou, and N. Mérillou. 2010. Heat Transfer Simulation for Modeling Realistic Winter Sceneries. CGF 29 (05 2010), 449 -- 458.Google Scholar
- E. Meron. 2019. Vegetation pattern formation: The mechanisms behind the forms. Physics Today 72, 11 (2019), 30--36.Google Scholar
Cross Ref
- R. Miyazaki, S. Yoshida, T. Nishita, and Y. Dobashi. 2001. A Method for Modeling Clouds Based on Atmospheric Fluid Dynamics. In PG. IEEE Computer Society, USA, 363.Google Scholar
- R. Měch and P. Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397--410.Google Scholar
- B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007).Google Scholar
Digital Library
- B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and View-Dependent Pruning of Large Botanical Scenes. Comp. Graph. Forum 30, 6 (2011), 1708--1718.Google Scholar
Cross Ref
- F. Neyret. 1997. Qualitative Simulation of Convective Cloud Formation and Evolution. In Computer Animation and Simulation '97, D. Thalmann and M. van de Panne (Eds.). Springer Vienna, Vienna, 113--124.Google Scholar
- T. Niese, S. Pirk, M. Albrecht, B. Benes, and O. Deussen. 2022. Procedural Urban Forestry. ACM Transaction on Graphics 41, 1 ((in press) 2022).Google Scholar
Digital Library
- M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26.Google Scholar
- P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55--64.Google Scholar
Digital Library
- D. Overby, Z. Melek, and J. Keyser. 2002. Interactive physically-based cloud simulation. In 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings. 469--470.Google Scholar
- W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages.Google Scholar
Digital Library
- S. Pirk, B. Benes, T. Ijiri, Y. Li, O. Deussen, B. Chen, and R. Měch. 2016. Modeling Plant Life in Computer Graphics. In ACM SIGGRAPH 2016 Courses. ACM, Article 18, 180 pages.Google Scholar
- S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (2017), 12 pages.Google Scholar
Digital Library
- S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages.Google Scholar
Digital Library
- S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages.Google Scholar
Digital Library
- H. Pretzsch, R. Grote, B. Reineking, T. Rötzer, and S. Seifert. 2008. Models for Forest Ecosystem Management: A European Perspective. Annals of botany 101 (06 2008), 1065--87.Google Scholar
- R. M. Pringle and C. E. Tarnita. 2017. Spatial Self-Organization of Ecosystems: Integrating Multiple Mechanisms of Regular-Pattern Formation. Annual Review of Entomology 62, 1 (2017), 359--377.Google Scholar
Cross Ref
- P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247--253.Google Scholar
Digital Library
- L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. 2006. Image-Based Plant Modeling. ACM Trans. Graph. 25, 3 (2006), 599--604.Google Scholar
Digital Library
- M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. van de Koppel. 2004. Self-Organized Patchiness and Catastrophic Shifts in Ecosystems. Science 305, 5692 (2004), 1926--1929.Google Scholar
- M. Rietkerk, F. van den Bosch, and J. van de Koppel. 1997. Site-Specific Properties and Irreversible Vegetation Changes in Semi-Arid Grazing Systems. Oikos 80, 2 (1997), 241--252.Google Scholar
Cross Ref
- L. Ringham, A. Owens, M. Cieslak, L. D. Harder, and P. Prusinkiewicz. 2021. Modeling Flower Pigmentation Patterns. ACM Trans. Graph. 40, 6, Article 233 (2021), 14 pages.Google Scholar
Digital Library
- H. Shao, T. Kugelstadt, T. Hädrich, W. Pałubicki, J. Bender, S. Pirk, and Dominik L. Michels. 2021. Accurately Solving Rod Dynamics with Graph Learning. In NeurIPS.Google Scholar
- J. Stam. 1999. Stable Fluids. Proc. of ACM SIGGRAPH (1999), 121--128.Google Scholar
- O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. CGF 33, 6 (2014), 118--131.Google Scholar
Digital Library
- P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (2008), 7 pages.Google Scholar
Digital Library
- U. Vimont, J. Gain, M. Lastic, G. Cordonnier, B. Abiodun, and M.-C. Cani. 2020. Interactive Meso-scale Simulation of Skyscapes. Eurographics (2020).Google Scholar
- H. Y. Wang, M. Z. Kang, J. Hua, and X. J. Wang. 2013. Modeling Plant Plasticity from a Biophysical Model: Biomechanics. In Proceedings of the 12th ACM SIGGRAPH Intl. Conf. on VRCAI. ACM, 115--122.Google Scholar
- A. Webanck, Y. Cortial, E. Guérin, and E. Galin. 2018. Procedural Cloudscapes. CGF 37, 2 (2018), 431--442.Google Scholar
Cross Ref
- J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. CGF 28, 2 (2009), 541--550.Google Scholar
Cross Ref
- H. Xiao, L. K. Berg, and M. Huang. 2018. The Impact of Surface Heterogeneities and Land-Atmosphere Interactions on Shallow Clouds Over ARM SGP Site. Journal of Advances in Modeling Earth Systems 10, 6 (2018), 1220--1244.Google Scholar
Cross Ref
- H. Xu, N. Gossett, and B. Chen. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. 26, 4 (2007), Article 19, 13 pages.Google Scholar
- F. Zellweger, P. De Frenne, J. Lenoir, P. Vangansbeke, K. Verheyen, M. Bernhardt-Römermann, L. Baeten, R. Hédl, I. Berki, J. Brunet, H. Van Calster, M. Chudomelová, G. Decocq, T. Dirnböck, T. Durak, T. Heinken, B. Jaroszewicz, M. Kopecký, F. Máliš, M. Macek, M. Malicki, T. Naaf, T. A. Nagel, A. Ortmann-Ajkai, P. Petřík, R. Pielech, K. Reczyńska, W. Schmidt, T. Standovár, K. Świerkosz, B. Teleki, O. Vild, M. Wulf, and D. Coomes. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368, 6492 (2020), 772--775.Google Scholar
- B. Zhang and D. L. DeAngelis. 2020. An overview of agent-based models in plant biology and ecology. Annals of Botany 126, 4 (03 2020), 539--557.Google Scholar
Cross Ref
- Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages.Google Scholar
Digital Library
Index Terms
Ecoclimates: climate-response modeling of vegetation
Recommendations
Stormscapes: simulating cloud dynamics in the now
The complex interplay of a number of physical and meteorological phenomena makes simulating clouds a challenging and open research problem. We explore a physically accurate model for simulating clouds and the dynamics of their transitions. We propose ...
Weatherscapes: nowcasting heat transfer and water continuity
Due to the complex interplay of various meteorological phenomena, simulating weather is a challenging and open research problem. In this contribution, we propose a novel physics-based model that enables simulating weather at interactive rates. By ...
Example-based rapid generation of vegetation on terrain via CNN-based distribution learning
Modeling large-scale vegetation on terrain is an important and challenging task in computer games, movie production and other digital entertainment applications. In this work, we propose a novel example-based method for rapid generation of vegetation in ...





Comments