skip to main content
research-article

Ecoclimates: climate-response modeling of vegetation

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

One of the greatest challenges to mankind is understanding the underlying principles of climate change. Over the last years, the role of forests in climate change has received increased attention. This is due to the observation that not only the atmosphere has a principal impact on vegetation growth but also that vegetation is contributing to local variations of weather resulting in diverse microclimates. The interconnection of plant ecosystems and weather is described and studied as ecoclimates. In this work we take steps towards simulating ecoclimates by modeling the feedback loops between vegetation, soil, and atmosphere. In contrast to existing methods that only describe the climate at a global scale, our model aims at simulating local variations of climate. Specifically, we model tree growth interactively in response to gradients of water, temperature and light. As a result, we are able to capture a range of ecoclimate phenomena that have not been modeled before, including geomorphic controls, forest edge effects, the Foehn effect and spatial vegetation patterning. To validate the plausibility of our method we conduct a comparative analysis to studies from ecology and climatology. Consequently, our method advances the state-of-the-art of generating highly realistic outdoor landscapes of vegetation.

Skip Supplemental Material Section

Supplemental Material

3528223.3530146.mp4

presentation

155-534-supp-video.mp4

supplemental material

References

  1. R. P. Allan, M. Barlow, M. P. Byrne, A. Cherchi, H. Douville, H. J. Fowler, T. Y. Gan, A. G. Pendergrass, D. Rosenfeld, A. L. S. Swann, L. J. Wilcox, and O. Zolina. 2020. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N.Y. Acad. Sci. (2020).Google ScholarGoogle Scholar
  2. M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10--34.Google ScholarGoogle Scholar
  3. O. Argudo, C. Andújar, A. Chica, E. Guérin, J. Digne, A. Peytavie, and E. Galin. 2017. Coherent multi-layer landscape synthesis. The Visual Computer 33, 6 (2017), 1005--1015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Bastiaansen, A. Doelman, M. B. Eppinga, and M. Rietkerk. 2020. The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation. Ecology Letters 23, 3 (2020), 414--429.Google ScholarGoogle ScholarCross RefCross Ref
  5. B. Beneš, N. Andrysco, and O. Št'ava. 2009. Interactive Modeling of Virtual Ecosystems. In Proceedings of the Fifth Eurographics Conference on Natural Phenomena (NPH'09). Eurographics Association, Goslar, DEU, 9--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. E. Bertuzzo, F. Carrara, L. Mari, F. Altermatt, I. Rodriguez-Iturbe, and A. Rinaldo. 2016. Geomorphic controls on elevational gradients of species richness. 113, 7 (2016), 1737--1742.Google ScholarGoogle Scholar
  7. G. Bonan. 2015. Ecological Climatology: Concepts and Applications (3 ed.). Cambridge University Press.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Bouthors, F. Neyret, N. Max, E. Bruneton, and C. Crassin. 2008. Interactive Multiple Anisotropic Scattering in Clouds. In I3D (2008). 173--182.Google ScholarGoogle Scholar
  9. D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruction Synthesis of Dense Foliage. ACM Trans. Graph. 32, 4, Article 74 (2013), 74:1--74:10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. N. Broadbent, G. P. Asner, M. Keller, D. E. Knapp, P. J. C. Oliveira, and J. N. Silva. 2008. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation 141, 7 (2008), 1745 -- 1757.Google ScholarGoogle ScholarCross RefCross Ref
  11. E. Bruneton and F. Neyret. 2012. Real-time Realistic Rendering and Lighting of Forests. Comput. Graph. Forum 31, 2pt1 (2012), 373--382.Google ScholarGoogle Scholar
  12. E. Ch'ng. 2011. Realistic Placement of Plants for Virtual Environments. IEEE Comput. Graph. Appl. 31, 4 (2011), 66--77.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and M.-P. Cani. 2017. Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation. ACM Trans. Graph. 36, 4, Article 134 (2017), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Delgado, N. Arroyo, J. R. Arevalo, and J. Fernández-Palacios. 2007. Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landscape and Urban Planning (07 2007), 328--340.Google ScholarGoogle Scholar
  15. O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. 2002. Interactive Visualization of Complex Plant Ecosystems. VIS '02 (2002), 219--226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275--286.Google ScholarGoogle Scholar
  17. P. Ecormier-Nocca, G. Cordonnier, P. Carrez, A.-M. Moigne, P. Memari, B. Benes, and M.-P. Cani. 2021. Authoring Consistent Landscapes with Flora and Fauna. ACM Trans. Graph. 40, 4, Article 105 (2021), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. W. Ferreira Barbosa, Y. Dobashi, and T. Yamamoto. 2015. Adaptive Cloud Simulation Using Position Based Fluids. Comput. Animat. Virtual Worlds 26, 3--4 (2015), 367--375.Google ScholarGoogle Scholar
  19. J. Gain, H. Long, G. Cordonnier, and M.-P. Cani. 2017. EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems. Computer Graphics Forum 36, 2 (2017), 63--73.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Goswami and F. Neyret. 2017. Real-Time Landscape-Size Convective Clouds Simulation and Rendering. In Proceedings of the 13th Workshop on Virtual Reality Interactions and Physical Simulations (VRIPHYS '17). Eurographics Association, 1--8.Google ScholarGoogle Scholar
  21. T. Hädrich, D. T. Banuti, W. Pałubicki, S. Pirk, and D. L. Michels. 2021. Fire in Paradise: Mesoscale Simulation of Wildfires. ACM Trans. Graph. 40, 4, Article 163 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. CGF 36, 2 (2017), 49--61.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Hädrich, M. Makowski, W. Pałubicki, D. Banuti, S. Pirk, and D. L. Michels. 2020. Stormscapes: Simulating Cloud Dynamics in the Now. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. 2003. Simulation of Cloud Dynamics on Graphics Hardware. In ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS '03). Eurographics Association, 92--101.Google ScholarGoogle Scholar
  25. J. A. A. Herrera, T. Hädrich, W. Pałubicki, D. T. Banuti, S. Pirk, and D. L. Michels. 2021. Weatherscapes: Nowcasting Heat Transfer and Water Continuity. ACM Trans. Graph. 40, 6, Article 204 (2021), 19 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. HilleRisLambers, M. Rietkerk, F. van den Bosch, H. H. T. Prins, and H. de Kroon. 2001. Vegetation Pattern Formation in Semi-Arid Grazing Systems. Ecology 82, 1 (2001), 50--61.Google ScholarGoogle ScholarCross RefCross Ref
  27. G. L. Horn, H. G. Ouwersloot, J. Vilà-Guerau de Arellano, and M. Sikma. 2015. Cloud Shading Effects on Characteristic Boundary-Layer Length Scales. Boundary-Layer Meteorology 157, 2 (01 Nov 2015), 237--263.Google ScholarGoogle Scholar
  28. T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling. Comp. Graph. Forum 25, 3 (2006), 617--624.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Jaeger and J. Teng. 2003. Tree and plant volume imaging - An introductive study towards voxelized functional landscapes. PMA (2003).Google ScholarGoogle Scholar
  30. K. Kapp, J. Gain, E. Guérin, E. Galin, and A. Peytavie. 2020. Data-driven Authoring of Large-scale Ecosystems. ACM Trans. Graph. (2020).Google ScholarGoogle Scholar
  31. E. Kessler. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulations. American Meteorological Society, Boston, MA, 1--84.Google ScholarGoogle Scholar
  32. M. Kovenock and A. L. S. Swann. 2018. Leaf Trait Acclimation Amplifies Simulated Climate Warming in Response to Elevated Carbon Dioxide. Global Biogeochemical Cycles 32, 10 (2018), 1437--1448.Google ScholarGoogle ScholarCross RefCross Ref
  33. P. K. Kundu, I. M. Cohen, and D. R. Dowling. 2012. Fluid Mechanics. Elsevier Science.Google ScholarGoogle Scholar
  34. B. Lane and P. Prusinkiewicz. 2002. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graphics Interface (2002), 69--80.Google ScholarGoogle Scholar
  35. B. Li, J. Kałużny, J. Klein, D. L. Michels, W. Pałubicki, B. Benes, and S. Pirk. 2021. Learning to Reconstruct Botanical Trees from Single Images. ACM Transaction on Graphics 40, 6, Article 231 (12 2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. 2011. Modeling and Generating Moving Trees from Video. ACM Trans. Graph. 30, 6, Article 127 (2011), 127:1--127:12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. P. Liang, X. Wang, H. Sun, Y. Fan, Y. Wu, X. Lin, and J. Chang. 2019. Forest type and height are important in shaping the altitudinal change of radial growth response to climate change. Scientific Reports 9, 1 (2019), 1336.Google ScholarGoogle ScholarCross RefCross Ref
  38. B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (Jan. 1999), 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texturelobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107--120.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Makowski, T. Hädrich, J. Scheffczyk, D. L. Michels, S. Pirk, and W. Pałubicki. 2019. Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems. ACM Trans. Graph. 38, 4, Article 131 (2019), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. N. Maréchal, E. Guérin, E. Galin, S. Mérillou, and N. Mérillou. 2010. Heat Transfer Simulation for Modeling Realistic Winter Sceneries. CGF 29 (05 2010), 449 -- 458.Google ScholarGoogle Scholar
  43. E. Meron. 2019. Vegetation pattern formation: The mechanisms behind the forms. Physics Today 72, 11 (2019), 30--36.Google ScholarGoogle ScholarCross RefCross Ref
  44. R. Miyazaki, S. Yoshida, T. Nishita, and Y. Dobashi. 2001. A Method for Modeling Clouds Based on Atmospheric Fluid Dynamics. In PG. IEEE Computer Society, USA, 363.Google ScholarGoogle Scholar
  45. R. Měch and P. Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397--410.Google ScholarGoogle Scholar
  46. B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and View-Dependent Pruning of Large Botanical Scenes. Comp. Graph. Forum 30, 6 (2011), 1708--1718.Google ScholarGoogle ScholarCross RefCross Ref
  48. F. Neyret. 1997. Qualitative Simulation of Convective Cloud Formation and Evolution. In Computer Animation and Simulation '97, D. Thalmann and M. van de Panne (Eds.). Springer Vienna, Vienna, 113--124.Google ScholarGoogle Scholar
  49. T. Niese, S. Pirk, M. Albrecht, B. Benes, and O. Deussen. 2022. Procedural Urban Forestry. ACM Transaction on Graphics 41, 1 ((in press) 2022).Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26.Google ScholarGoogle Scholar
  51. P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55--64.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. D. Overby, Z. Melek, and J. Keyser. 2002. Interactive physically-based cloud simulation. In 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings. 469--470.Google ScholarGoogle Scholar
  53. W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. S. Pirk, B. Benes, T. Ijiri, Y. Li, O. Deussen, B. Chen, and R. Měch. 2016. Modeling Plant Life in Computer Graphics. In ACM SIGGRAPH 2016 Courses. ACM, Article 18, 180 pages.Google ScholarGoogle Scholar
  55. S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (2017), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. H. Pretzsch, R. Grote, B. Reineking, T. Rötzer, and S. Seifert. 2008. Models for Forest Ecosystem Management: A European Perspective. Annals of botany 101 (06 2008), 1065--87.Google ScholarGoogle Scholar
  59. R. M. Pringle and C. E. Tarnita. 2017. Spatial Self-Organization of Ecosystems: Integrating Multiple Mechanisms of Regular-Pattern Formation. Annual Review of Entomology 62, 1 (2017), 359--377.Google ScholarGoogle ScholarCross RefCross Ref
  60. P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247--253.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. 2006. Image-Based Plant Modeling. ACM Trans. Graph. 25, 3 (2006), 599--604.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. van de Koppel. 2004. Self-Organized Patchiness and Catastrophic Shifts in Ecosystems. Science 305, 5692 (2004), 1926--1929.Google ScholarGoogle Scholar
  63. M. Rietkerk, F. van den Bosch, and J. van de Koppel. 1997. Site-Specific Properties and Irreversible Vegetation Changes in Semi-Arid Grazing Systems. Oikos 80, 2 (1997), 241--252.Google ScholarGoogle ScholarCross RefCross Ref
  64. L. Ringham, A. Owens, M. Cieslak, L. D. Harder, and P. Prusinkiewicz. 2021. Modeling Flower Pigmentation Patterns. ACM Trans. Graph. 40, 6, Article 233 (2021), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. H. Shao, T. Kugelstadt, T. Hädrich, W. Pałubicki, J. Bender, S. Pirk, and Dominik L. Michels. 2021. Accurately Solving Rod Dynamics with Graph Learning. In NeurIPS.Google ScholarGoogle Scholar
  66. J. Stam. 1999. Stable Fluids. Proc. of ACM SIGGRAPH (1999), 121--128.Google ScholarGoogle Scholar
  67. O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. CGF 33, 6 (2014), 118--131.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (2008), 7 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. U. Vimont, J. Gain, M. Lastic, G. Cordonnier, B. Abiodun, and M.-C. Cani. 2020. Interactive Meso-scale Simulation of Skyscapes. Eurographics (2020).Google ScholarGoogle Scholar
  70. H. Y. Wang, M. Z. Kang, J. Hua, and X. J. Wang. 2013. Modeling Plant Plasticity from a Biophysical Model: Biomechanics. In Proceedings of the 12th ACM SIGGRAPH Intl. Conf. on VRCAI. ACM, 115--122.Google ScholarGoogle Scholar
  71. A. Webanck, Y. Cortial, E. Guérin, and E. Galin. 2018. Procedural Cloudscapes. CGF 37, 2 (2018), 431--442.Google ScholarGoogle ScholarCross RefCross Ref
  72. J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. CGF 28, 2 (2009), 541--550.Google ScholarGoogle ScholarCross RefCross Ref
  73. H. Xiao, L. K. Berg, and M. Huang. 2018. The Impact of Surface Heterogeneities and Land-Atmosphere Interactions on Shallow Clouds Over ARM SGP Site. Journal of Advances in Modeling Earth Systems 10, 6 (2018), 1220--1244.Google ScholarGoogle ScholarCross RefCross Ref
  74. H. Xu, N. Gossett, and B. Chen. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. 26, 4 (2007), Article 19, 13 pages.Google ScholarGoogle Scholar
  75. F. Zellweger, P. De Frenne, J. Lenoir, P. Vangansbeke, K. Verheyen, M. Bernhardt-Römermann, L. Baeten, R. Hédl, I. Berki, J. Brunet, H. Van Calster, M. Chudomelová, G. Decocq, T. Dirnböck, T. Durak, T. Heinken, B. Jaroszewicz, M. Kopecký, F. Máliš, M. Macek, M. Malicki, T. Naaf, T. A. Nagel, A. Ortmann-Ajkai, P. Petřík, R. Pielech, K. Reczyńska, W. Schmidt, T. Standovár, K. Świerkosz, B. Teleki, O. Vild, M. Wulf, and D. Coomes. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368, 6492 (2020), 772--775.Google ScholarGoogle Scholar
  76. B. Zhang and D. L. DeAngelis. 2020. An overview of agent-based models in plant biology and ecology. Annals of Botany 126, 4 (03 2020), 539--557.Google ScholarGoogle ScholarCross RefCross Ref
  77. Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Ecoclimates: climate-response modeling of vegetation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader