Abstract
We propose a novel Clebsch method to simulate the free-surface vortical flow. At the center of our approach lies a level-set method enhanced by a wave-function correction scheme and a wave-function extrapolation algorithm to tackle the Clebsch method's numerical instabilities near a dynamic interface. By combining the Clebsch wave function's expressiveness in representing vortical structures and the level-set function's ability on tracking interfacial dynamics, we can model complex vortex-interface interaction problems that exhibit rich free-surface flow details on a Cartesian grid. We showcase the efficacy of our approach by simulating a wide range of new free-surface flow phenomena that were impractical for previous methods, including horseshoe vortex, sink vortex, bubble rings, and free-surface wake vortices.
Supplemental Material
- M. Aanjaneya, S. Patkar, and R. Fedkiw. 2013. A monolithic mass tracking formulation for bubbles in incompressible flow. J. Comput. Phys. 247 (2013), 17--61.Google Scholar
Cross Ref
- H. Bateman. 1929. Notes on a differential equation that occurs in the two-dimensional motion of a compressible fluid and the associated variational problems. Proc. R. Soc. London Ser. A 125 (1929), 598--618.Google Scholar
Cross Ref
- N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30 (2011), 10.Google Scholar
Digital Library
- A. Chern. 2017. Fluid dynamics with incompressible Schrödinger flow. Ph.D. Dissertation. California Institute of Technology.Google Scholar
- A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36 (2017), 142.Google Scholar
Digital Library
- A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. 2016. Schrödinger's smoke. ACM Trans. Graph. 35 (2016), 77.Google Scholar
Digital Library
- A. Clebsch. 1859. Ueber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56 (1859), 1--10.Google Scholar
Cross Ref
- M. Coquerelle and G. H. Cottet. 2008. A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (2008), 9121--9137.Google Scholar
Digital Library
- C. Eckart. 1938. The electrodynamics of material media. Phys. Rev. 54 (1938), 920--923.Google Scholar
Cross Ref
- D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183 (2002), 83--116.Google Scholar
Digital Library
- H. Ertel. 1942. Ein neuer hydrodynamischer Wirbelsatz. Wirbelsatz. Meteorol. Z. 59 (1942), 271--281.Google Scholar
- R. Fedkiw and S. Osher. 2002. Level set methods and dynamic implicit surfaces. Surfaces 44 (2002), 77.Google Scholar
- R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual simulation of smoke. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. 15--22.Google Scholar
- R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999), 457--492.Google Scholar
Digital Library
- F. Gibou, R. Fedkiw, and S. Osher. 2018. A review of level-set methods and some recent applications. J. Comput. Phys. 353 (2018), 82--109.Google Scholar
Cross Ref
- J. Hao, S. Xiong, and Y. Yang. 2019. Tracking vortex surfaces frozen in the virtual velocity in non-ideal flows. J. Fluid Mech. 863 (2019), 513--544.Google Scholar
Cross Ref
- P. He and Y. Yang. 2016. Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals. Phys. Fluids 28 (2016), 037101.Google Scholar
Cross Ref
- H. Helmholtz. 1858. Uber integrale der hydrodynamischen Gleichungen welche den Wirbel-bewegungen ensprechen. J. Reine Angew. Math 55 (1858), 25--55.Google Scholar
Cross Ref
- H. Hopf. 1931. Über die Abbildungen der Dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104 (1931), 637--665.Google Scholar
Cross Ref
- B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25 (2006), 151--175.Google Scholar
Digital Library
- D. L. Hu, B. Chan, and J. W. M. Bush. 2003. The hydrodynamics of water strider locomotion. Nature 424 (2003), 663--666.Google Scholar
Cross Ref
- L. Huang and D. L. Michels. 2020. Surface-only ferrofluids. ACM Trans. Graph. 39 (2020), 6.Google Scholar
Digital Library
- L. Huang, Z. Qu, X. Tan, X. Zhang, D. L. Michels, and C. Jiang. 2021. Ships, splashes, and waves on a vast ocean. ACM Trans. Graph. 40 (2021), 203.Google Scholar
Digital Library
- C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A. P. Selle, J. Chhugani, M. Holliman, and Y. Chen. 2007. Physical simulation for animation and visual effects: parallelization and characterization for chip multiprocessors. SIGARCH Comput. Archit. News 35 (2007), 220--231.Google Scholar
Digital Library
- C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34 (2015), 51.Google Scholar
Digital Library
- H. Kedia, D. Foster, M. R. Dennis, and W. T. M. Irvine. 2016. Weaving knotted vector fields with tunable helicity. Phys. Rev. Lett. 117 (2016), 274501.Google Scholar
Cross Ref
- E. A. Kuznetsov and A. V. Mikhailov. 1980. On the topological meaning of canonical Clebsch variables. Phys. Lett. A 77 (1980), 37--38.Google Scholar
Cross Ref
- F. Losasso, R. Fedkiw, and S. Osher. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35 (2006), 995--1010.Google Scholar
Cross Ref
- F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating water and smoke with an octree data structure. In ACM Trans. Graph. 457--462.Google Scholar
Digital Library
- F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14 (2008), 797--804.Google Scholar
Digital Library
- R. W. MacCormack. 2003. The effect of viscosity in hypervelocity impact cratering. J. Spacecr. Rockets. 40 (2003), 757--763.Google Scholar
Cross Ref
- E. Madelung. 1926. Eine anschauliche Deutung der Gleichung von Schrödinger. Naturwissenschaften 14 (1926), 1004--1004.Google Scholar
Cross Ref
- E. Madelung. 1927. Quantentheorie in hydrodynamischer Form. Z. Phys. 40 (1927), 322--326.Google Scholar
Cross Ref
- H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and D. Negrut. 2013. Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics. Mech. Sci. 4 (2013), 49--64.Google Scholar
Cross Ref
- R. I. McLachlan, C. Offen, and B. K. Tapley. 2019. Symplectic integration of PDEs using Clebsch variables. J. Comput. Dyn. 6 (2019), 111--130.Google Scholar
- S. Mochizuki, K. Suzukawa, K. Saga, and H. Osaka. 2008. Vortex Structures around a Flat Paddle Impeller in a Stirred Vessel. J. Fluid Sci. 3 (2008), 241--249.Google Scholar
Cross Ref
- H. K. Moffatt. 1969. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1969), 117--129.Google Scholar
Cross Ref
- J. J. Moreau. 1961. Constantes d'un îlot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. Paris 252 (1961), 2810--2812.Google Scholar
- M. Müller, D. Charypar, and M. H. Gross. 2003. Particle-based fluid simulation for interactive applications.. In Symposium on Computer Animation. 154--159.Google Scholar
- S. Osher and R. P. Fedkiw. 2001. Level set methods: an overview and some recent results. J. Comput. Phys. 169 (2001), 463--502.Google Scholar
Digital Library
- S. Osher and J. A. Sethian. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 160 (1988), 151--178.Google Scholar
- M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2019. On bubble rings and ink chandeliers. ACM Trans. Graph. 38 (2019), 1--14.Google Scholar
Digital Library
- L. M. Pismen and L. M Pismen. 1999. Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings. Vol. 100. Oxford University Press.Google Scholar
- Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen. 2019. Efficient and conservative fluids using bidirectional mapping. ACM Trans. Graph. 38 (2019), 4.Google Scholar
Digital Library
- N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. 22 (2003), 703--707.Google Scholar
Digital Library
- R. Salmon. 1988. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20 (1988), 225--256.Google Scholar
Cross Ref
- R. Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Sci. Adv. 2 (2016), e1501869.Google Scholar
Cross Ref
- A. Selle, N. Rasmussen, and R. Fedkiw. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24 (2005), 910--914.Google Scholar
Digital Library
- A. L. Sorokin. 2001. Madelung transformation for vortex flows of a perfect liquid. Dokl. Phys. 46 (2001), 576--578.Google Scholar
Cross Ref
- M. Sussman. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187 (2003), 110--136.Google Scholar
Digital Library
- R. Tao, H. Ren, Y. Tong, and S. Xiong. 2021. Construction and evolution of knotted vortex tubes in incompressible Schrödinger flow. Phys. Fluids 33 (2021), 077112.Google Scholar
Cross Ref
- G. I. Taylor and A. E. Green. 1937. Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. Lond. A 158 (1937), 499--521.Google Scholar
Cross Ref
- W. Thomson. 1869. On vortex motion. Trans. R. Soc. Edinburgh 25 (1869), 217--260.Google Scholar
Cross Ref
- B. Tings and D. Velotto. 2018. Comparison of ship wake detectability on C-band and X-band SAR. Int. J. Remote Sens 39 (2018), 4451--4468.Google Scholar
Cross Ref
- K. Marten; K. Shariff; S. Psarakos; D. J. White. 1996. Ring bubbles of dolphins. Sci. Am. 275 (1996), 82.Google Scholar
- J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2006. Vorticity and Vortex Dynamics. Springer.Google Scholar
- J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2015. Vortical Flows. Springer.Google Scholar
- S. Xiong, R. TAO, Y. Zhang, F. Feng, and B. ZHU. 2021. Incompressible Flow Simulation on Vortex Segment Clouds. ACM Trans. Graph. 40 (2021), 98.Google Scholar
Digital Library
- S. Xiong and Y. Yang. 2017. The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339 (2017), 31--45.Google Scholar
Digital Library
- S. Xiong and Y. Yang. 2019a. Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31 (2019), 047101.Google Scholar
Cross Ref
- S. Xiong and Y. Yang. 2019b. Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874 (2019), 952--978.Google Scholar
Cross Ref
- S. Xiong and Y. Yang. 2020. Effects of twist on the evolution of knotted magnetic flux tubes. J. Fluid Mech. 895 (2020), A28.Google Scholar
Cross Ref
- S. Yang, S. Xiong, Y. Zhang, F. Feng, J. Liu, and B. Zhu. 2021. Clebsch gauge fluid. ACM Trans. Graph. 40 (2021), 99.Google Scholar
Digital Library
- Y. Yang and D. I. Pullin. 2010. On Lagrangian and vortex-surface fields for flows with Taylor-Green and Kida-Pelz initial conditions. J. Fluid Mech. 661 (2010), 446--481.Google Scholar
Cross Ref
- Y. Yang and D. I. Pullin. 2011. Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows. J. Fluid Mech. 685 (2011), 146--164.Google Scholar
Cross Ref
- X. Zhang and R. Bridson. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33 (2014), 6.Google Scholar
Digital Library
- Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24 (2005), 965--972.Google Scholar
Digital Library
Index Terms
A clebsch method for free-surface vortical flow simulation
Recommendations
A Numerical Method for Free-Surface Flows and Its Application to Droplet Impact on a Thin Liquid Layer
We propose a simple and practical numerical method for free surface flows. The method is based various methods, the level set method of an interface capturing method, the THINC/WLIC (tangent of hyperbola for interface capturing/weighed line interface ...
A numerical method for capillarity-dominant free surface flows
The continuum surface force (CSF) method has been extensively employed in the volume-of-fluid (VOF), level set (LS) and front tracking methods to model the surface tension force. It is a robust method requiring relatively easy implementation. However, ...
3D flow simulation of straight groynes using hybrid DE-based artificial intelligence methods
In this study, hybrid differential evolution algorithms were run to study the three-dimensional mean flow field around straight groynes. The three-dimensional velocity components in a refined mesh around a groyne were measured using an acoustic Doppler ...





Comments