skip to main content
research-article
Public Access

A clebsch method for free-surface vortical flow simulation

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

We propose a novel Clebsch method to simulate the free-surface vortical flow. At the center of our approach lies a level-set method enhanced by a wave-function correction scheme and a wave-function extrapolation algorithm to tackle the Clebsch method's numerical instabilities near a dynamic interface. By combining the Clebsch wave function's expressiveness in representing vortical structures and the level-set function's ability on tracking interfacial dynamics, we can model complex vortex-interface interaction problems that exhibit rich free-surface flow details on a Cartesian grid. We showcase the efficacy of our approach by simulating a wide range of new free-surface flow phenomena that were impractical for previous methods, including horseshoe vortex, sink vortex, bubble rings, and free-surface wake vortices.

Skip Supplemental Material Section

Supplemental Material

3528223.3530150.mp4

presentation

116-544-supp-video.mp4

supplemental material

References

  1. M. Aanjaneya, S. Patkar, and R. Fedkiw. 2013. A monolithic mass tracking formulation for bubbles in incompressible flow. J. Comput. Phys. 247 (2013), 17--61.Google ScholarGoogle ScholarCross RefCross Ref
  2. H. Bateman. 1929. Notes on a differential equation that occurs in the two-dimensional motion of a compressible fluid and the associated variational problems. Proc. R. Soc. London Ser. A 125 (1929), 598--618.Google ScholarGoogle ScholarCross RefCross Ref
  3. N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30 (2011), 10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Chern. 2017. Fluid dynamics with incompressible Schrödinger flow. Ph.D. Dissertation. California Institute of Technology.Google ScholarGoogle Scholar
  5. A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36 (2017), 142.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. 2016. Schrödinger's smoke. ACM Trans. Graph. 35 (2016), 77.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Clebsch. 1859. Ueber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56 (1859), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Coquerelle and G. H. Cottet. 2008. A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (2008), 9121--9137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Eckart. 1938. The electrodynamics of material media. Phys. Rev. 54 (1938), 920--923.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183 (2002), 83--116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Ertel. 1942. Ein neuer hydrodynamischer Wirbelsatz. Wirbelsatz. Meteorol. Z. 59 (1942), 271--281.Google ScholarGoogle Scholar
  12. R. Fedkiw and S. Osher. 2002. Level set methods and dynamic implicit surfaces. Surfaces 44 (2002), 77.Google ScholarGoogle Scholar
  13. R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual simulation of smoke. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. 15--22.Google ScholarGoogle Scholar
  14. R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999), 457--492.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. Gibou, R. Fedkiw, and S. Osher. 2018. A review of level-set methods and some recent applications. J. Comput. Phys. 353 (2018), 82--109.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Hao, S. Xiong, and Y. Yang. 2019. Tracking vortex surfaces frozen in the virtual velocity in non-ideal flows. J. Fluid Mech. 863 (2019), 513--544.Google ScholarGoogle ScholarCross RefCross Ref
  17. P. He and Y. Yang. 2016. Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals. Phys. Fluids 28 (2016), 037101.Google ScholarGoogle ScholarCross RefCross Ref
  18. H. Helmholtz. 1858. Uber integrale der hydrodynamischen Gleichungen welche den Wirbel-bewegungen ensprechen. J. Reine Angew. Math 55 (1858), 25--55.Google ScholarGoogle ScholarCross RefCross Ref
  19. H. Hopf. 1931. Über die Abbildungen der Dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104 (1931), 637--665.Google ScholarGoogle ScholarCross RefCross Ref
  20. B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25 (2006), 151--175.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. L. Hu, B. Chan, and J. W. M. Bush. 2003. The hydrodynamics of water strider locomotion. Nature 424 (2003), 663--666.Google ScholarGoogle ScholarCross RefCross Ref
  22. L. Huang and D. L. Michels. 2020. Surface-only ferrofluids. ACM Trans. Graph. 39 (2020), 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Huang, Z. Qu, X. Tan, X. Zhang, D. L. Michels, and C. Jiang. 2021. Ships, splashes, and waves on a vast ocean. ACM Trans. Graph. 40 (2021), 203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A. P. Selle, J. Chhugani, M. Holliman, and Y. Chen. 2007. Physical simulation for animation and visual effects: parallelization and characterization for chip multiprocessors. SIGARCH Comput. Archit. News 35 (2007), 220--231.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34 (2015), 51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Kedia, D. Foster, M. R. Dennis, and W. T. M. Irvine. 2016. Weaving knotted vector fields with tunable helicity. Phys. Rev. Lett. 117 (2016), 274501.Google ScholarGoogle ScholarCross RefCross Ref
  27. E. A. Kuznetsov and A. V. Mikhailov. 1980. On the topological meaning of canonical Clebsch variables. Phys. Lett. A 77 (1980), 37--38.Google ScholarGoogle ScholarCross RefCross Ref
  28. F. Losasso, R. Fedkiw, and S. Osher. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35 (2006), 995--1010.Google ScholarGoogle ScholarCross RefCross Ref
  29. F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating water and smoke with an octree data structure. In ACM Trans. Graph. 457--462.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14 (2008), 797--804.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. W. MacCormack. 2003. The effect of viscosity in hypervelocity impact cratering. J. Spacecr. Rockets. 40 (2003), 757--763.Google ScholarGoogle ScholarCross RefCross Ref
  32. E. Madelung. 1926. Eine anschauliche Deutung der Gleichung von Schrödinger. Naturwissenschaften 14 (1926), 1004--1004.Google ScholarGoogle ScholarCross RefCross Ref
  33. E. Madelung. 1927. Quantentheorie in hydrodynamischer Form. Z. Phys. 40 (1927), 322--326.Google ScholarGoogle ScholarCross RefCross Ref
  34. H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and D. Negrut. 2013. Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics. Mech. Sci. 4 (2013), 49--64.Google ScholarGoogle ScholarCross RefCross Ref
  35. R. I. McLachlan, C. Offen, and B. K. Tapley. 2019. Symplectic integration of PDEs using Clebsch variables. J. Comput. Dyn. 6 (2019), 111--130.Google ScholarGoogle Scholar
  36. S. Mochizuki, K. Suzukawa, K. Saga, and H. Osaka. 2008. Vortex Structures around a Flat Paddle Impeller in a Stirred Vessel. J. Fluid Sci. 3 (2008), 241--249.Google ScholarGoogle ScholarCross RefCross Ref
  37. H. K. Moffatt. 1969. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1969), 117--129.Google ScholarGoogle ScholarCross RefCross Ref
  38. J. J. Moreau. 1961. Constantes d'un îlot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. Paris 252 (1961), 2810--2812.Google ScholarGoogle Scholar
  39. M. Müller, D. Charypar, and M. H. Gross. 2003. Particle-based fluid simulation for interactive applications.. In Symposium on Computer Animation. 154--159.Google ScholarGoogle Scholar
  40. S. Osher and R. P. Fedkiw. 2001. Level set methods: an overview and some recent results. J. Comput. Phys. 169 (2001), 463--502.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. S. Osher and J. A. Sethian. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 160 (1988), 151--178.Google ScholarGoogle Scholar
  42. M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2019. On bubble rings and ink chandeliers. ACM Trans. Graph. 38 (2019), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. L. M. Pismen and L. M Pismen. 1999. Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings. Vol. 100. Oxford University Press.Google ScholarGoogle Scholar
  44. Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen. 2019. Efficient and conservative fluids using bidirectional mapping. ACM Trans. Graph. 38 (2019), 4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. 22 (2003), 703--707.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. R. Salmon. 1988. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20 (1988), 225--256.Google ScholarGoogle ScholarCross RefCross Ref
  47. R. Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Sci. Adv. 2 (2016), e1501869.Google ScholarGoogle ScholarCross RefCross Ref
  48. A. Selle, N. Rasmussen, and R. Fedkiw. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24 (2005), 910--914.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. A. L. Sorokin. 2001. Madelung transformation for vortex flows of a perfect liquid. Dokl. Phys. 46 (2001), 576--578.Google ScholarGoogle ScholarCross RefCross Ref
  50. M. Sussman. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187 (2003), 110--136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. R. Tao, H. Ren, Y. Tong, and S. Xiong. 2021. Construction and evolution of knotted vortex tubes in incompressible Schrödinger flow. Phys. Fluids 33 (2021), 077112.Google ScholarGoogle ScholarCross RefCross Ref
  52. G. I. Taylor and A. E. Green. 1937. Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. Lond. A 158 (1937), 499--521.Google ScholarGoogle ScholarCross RefCross Ref
  53. W. Thomson. 1869. On vortex motion. Trans. R. Soc. Edinburgh 25 (1869), 217--260.Google ScholarGoogle ScholarCross RefCross Ref
  54. B. Tings and D. Velotto. 2018. Comparison of ship wake detectability on C-band and X-band SAR. Int. J. Remote Sens 39 (2018), 4451--4468.Google ScholarGoogle ScholarCross RefCross Ref
  55. K. Marten; K. Shariff; S. Psarakos; D. J. White. 1996. Ring bubbles of dolphins. Sci. Am. 275 (1996), 82.Google ScholarGoogle Scholar
  56. J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2006. Vorticity and Vortex Dynamics. Springer.Google ScholarGoogle Scholar
  57. J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2015. Vortical Flows. Springer.Google ScholarGoogle Scholar
  58. S. Xiong, R. TAO, Y. Zhang, F. Feng, and B. ZHU. 2021. Incompressible Flow Simulation on Vortex Segment Clouds. ACM Trans. Graph. 40 (2021), 98.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. S. Xiong and Y. Yang. 2017. The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339 (2017), 31--45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. S. Xiong and Y. Yang. 2019a. Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31 (2019), 047101.Google ScholarGoogle ScholarCross RefCross Ref
  61. S. Xiong and Y. Yang. 2019b. Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874 (2019), 952--978.Google ScholarGoogle ScholarCross RefCross Ref
  62. S. Xiong and Y. Yang. 2020. Effects of twist on the evolution of knotted magnetic flux tubes. J. Fluid Mech. 895 (2020), A28.Google ScholarGoogle ScholarCross RefCross Ref
  63. S. Yang, S. Xiong, Y. Zhang, F. Feng, J. Liu, and B. Zhu. 2021. Clebsch gauge fluid. ACM Trans. Graph. 40 (2021), 99.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Y. Yang and D. I. Pullin. 2010. On Lagrangian and vortex-surface fields for flows with Taylor-Green and Kida-Pelz initial conditions. J. Fluid Mech. 661 (2010), 446--481.Google ScholarGoogle ScholarCross RefCross Ref
  65. Y. Yang and D. I. Pullin. 2011. Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows. J. Fluid Mech. 685 (2011), 146--164.Google ScholarGoogle ScholarCross RefCross Ref
  66. X. Zhang and R. Bridson. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33 (2014), 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24 (2005), 965--972.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A clebsch method for free-surface vortical flow simulation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader