skip to main content
research-article

Moving level-of-detail surfaces

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

We present a simple, fast, and smooth scheme to approximate Algebraic Point Set Surfaces using non-compact kernels, which is particularly suited for filtering and reconstructing point sets presenting large missing parts. Our key idea is to consider a moving level-of-detail of the input point set which is adaptive w.r.t. to the evaluation location, just such as the samples weights are output sensitive in the traditional moving least squares scheme. We also introduce an adaptive progressive octree refinement scheme, driven by the resulting implicit surface, to properly capture the modeled geometry even far away from the input samples. Similarly to typical compactly-supported approximations, our operator runs in logarithmic time while defining high quality surfaces even on challenging inputs for which only global optimizations achieve reasonable results. We demonstrate our technique on a variety of point sets featuring geometric noise as well as large holes.

Skip Supplemental Material Section

Supplemental Material

130-549-supp-video.mp4

supplemental material

3528223.3530151.mp4

presentation

References

  1. Marc Alexa and Anders Adamson. 2009. Interpolatory point set surfaces - convexity and Hermite data. ToG 28, 2 (2009), 20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. 2001. Point set surfaces. In Proceedings Visualization, 2001. VIS '01. 21--29, 537.Google ScholarGoogle Scholar
  3. Nina Amenta and Yong Joo Kil. 2004. Defining point-set surfaces. In ToG, Vol. 23. ACM, 264--270.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW Levin, and Alec Jacobson. 2018. Fast winding numbers for soups and clouds. ToG 37, 4 (2018), 43.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Matthew Berger, Joshua A Levine, Luis Gustavo Nonato, Gabriel Taubin, and Claudio T Silva. 2013. A benchmark for surface reconstruction. ToG 32, 2 (2013), 20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud, Joshua A Levine, Andrei Sharf, and Claudio T Silva. 2017. A survey of surface reconstruction from point clouds. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 301--329.Google ScholarGoogle Scholar
  7. Jules Bloomenthal. 1988. Polygonization of implicit surfaces. Computer Aided Geometric Design 5, 4 (1988), 341--355.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Mario Botsch and Leif Kobbelt. 2004. A remeshing approach to multiresolution modeling. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. 185--192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fatih Calakli and Gabriel Taubin. 2011. SSD: Smooth signed distance surface reconstruction. Computer Graphics Forum 30, 7 (2011), 1993--2002.Google ScholarGoogle ScholarCross RefCross Ref
  10. Stéphane Calderon and Tamy Boubekeur. 2014. Point Morphology. ToG (Proc. SIGGRAPH 2014) 33, 4, Article 45 (2014), 45:1--45:13 pages.Google ScholarGoogle Scholar
  11. Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang, and Zhixun Su. 2010. Point Cloud Skeletons via Laplacian-Based Contraction. In Proc. of IEEE Conference on Shape Modeling and Applications'10. 187--197.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. 2001. Reconstruction and Representation of 3D Objects with Radial Basis Functions. In Proc. SIGGRAPH (SIGGRAPH '01). 67--76.Google ScholarGoogle Scholar
  13. Jiazhou Chen, Gael Guennebaud, Pascal Barla, and Xavier Granier. 2013. Non-oriented MLS Gradient Fields. Computer Graphics Forum 32, 8 (Aug. 2013), 98--109.Google ScholarGoogle ScholarCross RefCross Ref
  14. Tamal K Dey and Jian Sun. 2005. An Adaptive MLS Surface for Reconstruction with Guarantees.. In Symposium on Geometry processing. 43--52.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Leslie Greengard and Vladimir Rokhlin. 1987. A fast algorithm for particle simulations. Journal of computational physics 73, 2 (1987), 325--348.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gaël Guennebaud, Marcel Germann, and Markus Gross. 2008. Dynamic Sampling and Rendering of Algebraic Point Set Surfaces. Computer Graphics Forum 27, 2 (2008), 653--662.Google ScholarGoogle ScholarCross RefCross Ref
  17. Gaël Guennebaud and Markus Gross. 2007. Algebraic Point Set Surfaces. In ACM SIGGRAPH 2007 Papers (SIGGRAPH '07). New York, NY, USA.Google ScholarGoogle Scholar
  18. Thierry Guillemot, Andrès Almansa, and Tamy Boubekeur. 2012. Non Local Point Set Surfaces. In Proceedings of 3DIMPVT.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: A Self-Prior for Deformable Meshes. ToG 39, 4, Article 126 (July 2020), 12 pages.Google ScholarGoogle Scholar
  20. Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and Baoquan Chen. 2013. L1-medial skeleton of point cloud. ToG 32, 4 (2013), 65--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational Implicit Point Set Surfaces. ToG 38, 4 (july 2019), 124:1--124:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Zhongping Ji, Ligang Liu, and Yigang Wang. 2010. B-Mesh: A Modeling System for Base Meshes of 3D Articulated Shapes. Computer Graphics Forum 29 (09 2010), 2169--2177.Google ScholarGoogle Scholar
  23. Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of hermite data. In ToG, Vol. 21. ACM, 339--346.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface reconstruction. In Proceedings of the fourth Eurographics symposium on Geometry processing, Vol. 7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction. ToG 32, 3 (2013), 29.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. David Levin. 1998. The approximation power of moving least-squares. Technical Report. Math. Comp.Google ScholarGoogle Scholar
  27. David Levin. 2003. Mesh-Independent Surface Interpolation. Geometric Modeling for Scientific Visualization 3 (01 2003).Google ScholarGoogle Scholar
  28. William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D surface construction algorithm. In ACM siggraph computer graphics, Vol. 21. ACM, 163--169.Google ScholarGoogle Scholar
  29. Wenjia Lu, Zuoqiang Shi, Jian Sun, and Bin Wang. 2018. Surface Reconstruction Based on the Modified Gauss Formula. ToG 38, 1 (2018), 2.Google ScholarGoogle Scholar
  30. Nicolas Mellado, Gaël Guennebaud, Pascal Barla, Patrick Reuter, and Christophe Schlick. 2012. Growing Least Squares for the Analysis of Manifolds in Scale-Space. Comp. Graph. Forum 31, 5 (2012), 1691--1701.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Guy M Morton. 1966. A computer oriented geodetic data base and a new technique in file sequencing. (1966).Google ScholarGoogle Scholar
  32. Patrick Mullen, Fernando De Goes, Mathieu Desbrun, David Cohen-Steiner, and Pierre Alliez. 2010. Signing the unsigned: Robust surface reconstruction from raw pointsets. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1733--1741.Google ScholarGoogle Scholar
  33. Georges Nader, Gael Guennebaud, and Nicolas Mellado. 2014. Adaptive Multi-scale Analysis for Point-based Surface Editing. Computer Graphics Forum 33, 7 (2014), 171--179.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. 2003. Multi-level partition of unity implicits. Vol. 22.Google ScholarGoogle Scholar
  35. A Cengiz Öztireli, Gael Guennebaud, and Markus Gross. 2009. Feature preserving point set surfaces based on non-linear kernel regression. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 493--501.Google ScholarGoogle Scholar
  36. Daniel Rebain, Baptiste Angles, Julien Valentin, Nicholas Vining, Jiju Peethambaran, Shahram Izadi, and Andrea Tagliasacchi. 2019. LSMAT least squares medial axis transform. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 5--18.Google ScholarGoogle Scholar
  37. Patrick Reuter, Pierre Joyot, Jean Trunzler, Tamy Boubekeur, and Christophe Schlick. 2005. Point set surfaces with sharp features. (03 2005).Google ScholarGoogle Scholar
  38. Brett Ridel, Gael Guennebaud, Patrick Reuter, and Xavier Granier. 2015. Parabolic-cylindrical moving least squares surfaces. Computers and Graphics 51 (June 2015), 60--66.Google ScholarGoogle Scholar
  39. Vladimir Rokhlin. 1985. Rapid solution of integral equations of classical potential theory. Journal of computational physics 60, 2 (1985), 187--207.Google ScholarGoogle ScholarCross RefCross Ref
  40. Chun-Xia Xiao. 2011. Multi-Level Partition of Unity Algebraic Point Set Surfaces. J. Comput. Sci. Technol. 26, 2 (March 2011), 229--238.Google ScholarGoogle ScholarCross RefCross Ref
  41. Tong Zhao, Pierre Alliez, Tamy Boubekeur, Laurent Busé, and Jean-Marc Thiery. 2021. Progressive Discrete Domains for Implicit Surface Reconstruction. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 143--156.Google ScholarGoogle Scholar

Index Terms

  1. Moving level-of-detail surfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 Owner/Author

      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader