skip to main content
research-article

Alpha wrapping with an offset

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Given an input 3D geometry such as a triangle soup or a point set, we address the problem of generating a watertight and orientable surface triangle mesh that strictly encloses the input. The output mesh is obtained by greedily refining and carving a 3D Delaunay triangulation on an offset surface of the input, while carving with empty balls of radius alpha. The proposed algorithm is controlled via two user-defined parameters: alpha and offset. Alpha controls the size of cavities or holes that cannot be traversed during carving, while offset controls the distance between the vertices of the output mesh and the input. Our algorithm is guaranteed to terminate and to yield a valid and strictly enclosing mesh, even for defect-laden inputs. Genericity is achieved using an abstract interface probing the input, enabling any geometry to be used, provided a few basic geometric queries can be answered. We benchmark the algorithm on large public datasets such as Thingi10k, and compare it to state-of-the-art approaches in terms of robustness, approximation, output complexity, speed, and peak memory consumption. Our implementation is available through the CGAL library.

Skip Supplemental Material Section

Supplemental Material

3528223.3530152.mp4

presentation

References

  1. Rémi Allegre, Raphaëlle Chaine, and Samir Akkouche. 2005. Convection-driven dynamic surface reconstruction. In International Conference on Shape Modeling and Applications. IEEE, IEEE, Cambridge, Massachusetts, USA., 33--42.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Pierre Alliez, Stéphane Tayeb, and Camille Wormser. 2021. 3D Fast Intersection and Distance Computation. In CGAL User and Reference Manual (5.3.1 ed.). CGAL Editorial Board, Sophia Antipolis, France. https://doc.cgal.org/5.3.1/Manual/packages.html#PkgAABBTreeGoogle ScholarGoogle Scholar
  3. Marco Attene, Marcel Campen, and Leif Kobbelt. 2013. Polygon mesh repairing: An application perspective. ACM Computing Surveys (CSUR) 45, 2 (2013), 1--33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gino van den Bergen. 1997. Efficient collision detection of complex deformable models using AABB trees. Journal of graphics tools 2, 4 (1997), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud, Joshua A Levine, Andrei Sharf, and Claudio T Silva. 2017. A survey of surface reconstruction from point clouds. Computer Graphics Forum 36 (2017), 301--329.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fausto Bernardini and Chandrajit L Bajaj. 1997. Sampling and reconstructing manifolds using alpha-shapes. In Proceedings of Canadian Conference on Computational Geometry. Unknown publisher, Kingston, Ontario, Canada, 193--198.Google ScholarGoogle Scholar
  7. Fausto Bernardini, Chandrajit L Bajaj, Jindong Chen, and Daniel R Schikore. 1999. Automatic reconstruction of 3D CAD models from digital scans. International Journal of Computational Geometry and Applications 9, 04n05 (1999), 327--369.Google ScholarGoogle ScholarCross RefCross Ref
  8. Stefan Bischoff, Darko Pavic, and Leif Kobbelt. 2005. Automatic Restoration of Polygon Models. ACM Transactions on Graphics 24 (2005), 1332--1352.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jean-Daniel Boissonnat. 1984. Geometric structures for three-dimensional shape representation. ACM Transactions on Graphics (TOG) 3, 4 (1984), 266--286.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jean-Daniel Boissonnat and Steve Oudot. 2005. Provably good sampling and meshing of surfaces. Graph. Models 67, 5 (2005), 405--451.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mario Botsch and Leif Kobbelt. 2001. A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes. In Proceedings of the Vision Modeling and Visualization conference. Aka GmbH, Stuttgart, Germany, 283--290.Google ScholarGoogle Scholar
  12. Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. 2001. Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Applied Mathematics 109, 1--2 (2001), 25--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fatih Calakli and Gabriel Taubin. 2011. SSD: Smooth signed distance surface reconstruction. Computer Graphics Forum 30, 7 (2011), 1993--2002.Google ScholarGoogle ScholarCross RefCross Ref
  14. Stéphane Calderon and Tamy Boubekeur. 2017. Bounding proxies for shape approximation. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Marcel Campen and Leif Kobbelt. 2010. Exact and robust (self-) intersections for polygonal meshes. Computer Graphics Forum 29, 2 (2010), 397--406.Google ScholarGoogle ScholarCross RefCross Ref
  16. Chia-Tche Chang, Bastien Gorissen, and Samuel Melchior. 2011. Fast oriented bounding box optimization on the rotation group SO (3, R). ACM Transactions on Graphics (TOG) 30, 5 (2011), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Siu-Wing Cheng, Tamal K Dey, and Joshua A Levine. 2008. A practical Delaunay meshing algorithm for a large class of domains. In Proceedings of the 16th International Meshing Roundtable. IMR, Springer, USA, 477--494.Google ScholarGoogle ScholarCross RefCross Ref
  18. Siu-Wing Cheng, Tamal K Dey, and Edgar A Ramos. 2010. Delaunay refinement for piecewise smooth complexes. Discrete & Computational Geometry 43, 1 (2010), 121--166.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Generation (1st ed.). Chapman and Hall/CRC, Florida, USA.Google ScholarGoogle Scholar
  20. Tamal Dey. 2010. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis by Tamal K. Dey Cambridge University Press. SIGACT News 41, 1 (mar 2010), 24--27.Google ScholarGoogle Scholar
  21. Lorenzo Diazzi and Marco Attene. 2021. Convex Polyhedral Meshing for Robust Solid Modeling. ACM Transactions on Graphics 40, 6, Article 259 (dec 2021), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Herbert Edelsbrunner. 2003. Surface reconstruction by wrapping finite sets in space. In Discrete and computational geometry. Springer, USA, 379--404.Google ScholarGoogle Scholar
  23. Herbert Edelsbrunner and Ernst P Mücke. 1994. Three-dimensional alpha shapes. ACM Transactions on Graphics (TOG) 13, 1 (1994), 43--72.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Joachim Giesen, Frédéric Cazals, Mark Pauly, and Afra Zomorodian. 2006. The conformal alpha shape filtration. The Visual Computer 22, 8 (2006), 531--540.Google ScholarGoogle ScholarCross RefCross Ref
  25. Joachim Giesen and Matthias John. 2002. Surface reconstruction based on a dynamical system. Computer graphics forum 21, 3 (2002), 363--371.Google ScholarGoogle Scholar
  26. Stefan Gumhold, Pavel Borodin, and Reinhard Klein. 2003. Intersection free simplification. International Journal of Shape Modeling 9, 02 (2003), 155--176.Google ScholarGoogle ScholarCross RefCross Ref
  27. Baining Guo, Jai Menon, and Brian Willette. 1997. Surface reconstruction using alpha shapes. Computer graphics forum 16, 4 (1997), 177--190.Google ScholarGoogle Scholar
  28. Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast tetrahedral meshing in the wild. ACM Transactions on Graphics (TOG) 39, 4 (2020), 117--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jingwei Huang, Hao Su, and Leonidas J. Guibas. 2018. Robust Watertight Manifold Surface Generation Method for ShapeNet Models. CoRR abs/1802.01698 (2018), 1--10. http://arxiv.org/abs/1802.01698Google ScholarGoogle Scholar
  31. Jingwei Huang, Yichao Zhou, and Leonidas J. Guibas. 2020. ManifoldPlus: A Robust and Scalable Watertight Manifold Surface Generation Method for Triangle Soups. CoRR abs/2005.11621 (2020), 1--10. arXiv:2005.11621 https://arxiv.org/abs/2005.11621Google ScholarGoogle Scholar
  32. Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside segmentation using generalized winding numbers. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tao Ju. 2004. Robust Repair of Polygonal Models. ACM Transactions on Graphics 23, 3 (2004), 888--895.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Franjo Juretić and Norbert Putz. 2011. A Surface-Wrapping Algorithm with Hole Detection Based on the Heat Diffusion Equation. In Proceedings of the 20th International Meshing Roundtable. Springer, New York, USA, 405--418.Google ScholarGoogle ScholarCross RefCross Ref
  35. Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Reconstruction. In Proceedings of EUROGRAPHICS Symposium on Geometry Processing. Eurographics Association, Cagliari, Sardinia, Italy, 61--70.Google ScholarGoogle Scholar
  36. Leif Kobbelt, Jens Vorsatz, Ulf Labsik, and Hans-Peter Seidel. 1999. A shrink wrapping approach to remeshing polygonal surfaces. Computer Graphics Forum 18, 3 (1999), 119--130.Google ScholarGoogle ScholarCross RefCross Ref
  37. Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, USA, 1--10.Google ScholarGoogle Scholar
  38. YK Lee, Chin K Lim, Hamid Ghazialam, Harsh Vardhan, and Erling Eklund. 2010. Surface mesh generation for dirty geometries by the Cartesian shrink-wrapping technique. Engineering with Computers 26, 4 (2010), 377--390.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Peter Liepa. 2003. Filling holes in meshes. In Proceedings of the ACM/Eurographics Symposium on Geometry Processing. ACM, Aachen, 200--205.Google ScholarGoogle Scholar
  40. Alexander Malyshev, Artem Zhidkov, Vadim Turlapov, and France Guyancourt. 2018. Adaptive mesh generation using shrink wrapping approach. In Proceedings of GraphiCon'2018. GraphiCon Scientific Society, Tomsk, Russia, 479--483.Google ScholarGoogle Scholar
  41. D Martineau, J Gould, and J Papper. 2016. An integrated framework for wrapping and mesh generation of complex geometries. In European Congress on Computational Methods in Applied Sciences and Engineering (Greece). ECCOMAS, Europe, 6938--6954.Google ScholarGoogle ScholarCross RefCross Ref
  42. Fakir Nooruddin and Greg Turk. 2003. Simplification and Repair of Polygonal Models Using Volumetric Techniques. IEEE Transactions on Visualization and Computer Graphics 9, 2 (2003), 191--205.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Pedro V Sander, Xianfeng Gu, Steven J Gortler, Hugues Hoppe, and John Snyder. 2000. Silhouette clipping. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press, USA, 327--334.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Silvia Sellán, Noam Aigerman, and Alec Jacobson. 2021. Swept Volumes via Spacetime Numerical Continuation. ACM Transactions on Graphics 40, 4 (2021), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Chen Shen, James F. O'Brien, and Jonathan R. Shewchuk. 2004. Interpolating and Approximating Implicit Surfaces from Polygon Soup. ACM Transactions on Graphics 23, 3 (2004), 896--904.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. David A Stuart, Joshua A Levine, Ben Jones, and Adam W Bargteil. 2013. Automatic construction of coarse, high-quality tetrahedralizations that enclose and approximate surfaces for animation. In Proceedings of Motion on Games. ACM, USA, 213--222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Marek Teichmann and Michael Capps. 1998. Surface reconstruction with anisotropic density-scaled alpha shapes. In Proceedings of Visualization (Research Triangle Park, North Carolina, USA). IEEE, IEEE, USA, 67--72.Google ScholarGoogle ScholarCross RefCross Ref
  49. The CGAL Project. 2021. CGAL User and Reference Manual (5.3 ed.). CGAL Editorial Board, Sophia Antipolis, France. https://doc.cgal.org/5.3/Manual/packages.htmlGoogle ScholarGoogle Scholar
  50. Andreas Von Dziegielewski, Michael Hemmer, and Elmar Schömer. 2013. High precision conservative surface mesh generation for swept volumes. IEEE Transactions on Automation Science and Engineering 12, 1 (2013), 183--191.Google ScholarGoogle ScholarCross RefCross Ref
  51. Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech Matusik. 2021. Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Construction from Human Design Sequences. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Hongyi Xu and Jernej Barbič. 2014. Signed Distance Fields for Polygon Soup Meshes. In Proceedings of Graphics Interface 2014 (Montreal, Quebec, Canada) (GI '14). Canadian Information Processing Society, CAN, 35--41.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha Chaudhuri, and Olga Sorkine-Hornung. 2020. Neural cages for detail-preserving 3D deformations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Nashville, 75--83.Google ScholarGoogle ScholarCross RefCross Ref
  54. Tong Zhao, Pierre Alliez, Tamy Boubekeur, Laurent Busé, and Jean-Marc Thiery. 2021. Progressive Discrete Domains for Implicit Surface Reconstruction. Computer Graphics Forum 40, 5 (2021), 143--156.Google ScholarGoogle ScholarCross RefCross Ref
  55. Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv:1605.04797 [cs.GR]Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 41, Issue 4
    July 2022
    1978 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3528223
    Issue’s Table of Contents

    Copyright © 2022 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 22 July 2022
    Published in tog Volume 41, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader