Abstract
We propose a scalable neural scene reconstruction and rendering method to support distributed training and interactive rendering of large indoor scenes. Our representation is based on tiles. Tile appearances are trained in parallel through a background sampling strategy that augments each tile with distant scene information via a proxy global mesh. Each tile has two low-capacity MLPs: one for view-independent appearance (diffuse color and shading) and one for view-dependent appearance (specular highlights, reflections). We leverage the phenomena that complex view-dependent scene reflections can be attributed to virtual lights underneath surfaces at the total ray distance to the source. This lets us handle sparse samplings of the input scene where reflection highlights do not always appear consistently in input images. We show interactive free-viewpoint rendering results from five scenes, one of which covers an area of more than 100 m2. Experimental results show that our method produces higher-quality renderings than a single large-capacity MLP and five recent neural proxy-geometry and voxel-based baseline methods. Our code and data are available at project webpage https://xchaowu.github.io/papers/scalable-nisr.
Supplemental Material
- J. Amanatides, A. Woo, et al. 1987. A fast voxel traversal algorithm for ray tracing.. In Eurographics, Vol. 87. 3--10.Google Scholar
- B. Attal, E. Laidlaw, A. Gokaslan, C. Kim, C. Richardt, J. Tompkin, and M. O'Toole. 2021. TöRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis. arXiv:2109.15271 [cs.CV]Google Scholar
- J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. arXiv:2103.13415 [cs.CV]Google Scholar
- D. Bau, H. Strobelt, W. Peebles, J. Wulff, B. Zhou, J. Zhu, and A. Torralba. 2020. Semantic photo manipulation with a generative image prior. arXiv preprint arXiv:2005.07727 (2020).Google Scholar
- S. Bi, Z. Xu, P. Srinivasan, B. Mildenhall, K. Sulkavalli, M. Hašan, Y. Hold-Geoffroy, D. Kriegman, and R. Ramamoorthi. 2020. Neural Reflectance Fields for Appearance Acquisition. https://arxiv.org/abs/2008.03824 (2020).Google Scholar
- M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. Lensch. 2021. NeRD: Neural Reflectance Decomposition from Image Collections. In ICCV.Google Scholar
- C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. 2001. Unstructured lumigraph rendering. In SIGGRAPH, ACM. 425--432.Google Scholar
- CapturingReality. 2016. Reality capture, http://capturingreality.com.Google Scholar
- D. Casas, C. Richardt, J. Collomosse, C. Theobalt, and A. Hilton. 2015. 4D Model Flow: Precomputed Appearance Alignment for Real-time 4D Video Interpolation. Computer Graphics Forum Journal of the European Association for Computer Graphics (2015).Google Scholar
- E. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. 2021. pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis. In CVPR.Google Scholar
- G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. 2013. Depth synthesis and local warps for plausible image-based navigation. 32, 3 (2013), 1--12.Google Scholar
- S. E. Chen and L. Williams. 1993. View Interpolation for Image Synthesis. In SIGGRAPH, ACM. 279--288.Google Scholar
- D. Cohen-Steiner, P. Alliez, and M. Desbrun. 2004. Variational shape approximation. In SIGGRAPH, ACM. 905--914.Google Scholar
- P. Debevec, Y. Yu, and G. Borshukov. 1998. Efficient view-dependent image-based rendering with projective texture-mapping. In Eurographics. Springer, 105--116.Google Scholar
- R. Du, M. Chuang, W. Chang, H. Hoppe, and A. Varshney. 2019. Montage4D: Real-Time Seamless Fusion and Stylization of Multiview Video Textures. Journal of Computer Graphics Techniques 8, 1 (2019), 1--34. Google Scholar
Cross Ref
- M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. De Aguiar, N. Ahmed, C. Theobalt, and A. Sellent. 2008. Floating Textures. (2008).Google Scholar
- J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck, N. Snavely, and R. Tucker. 2019. Deepview: View synthesis with learned gradient descent. In CVPR. 2367--2376.Google Scholar
- G. Gafni, J. Thies, M. Zollhöfer, and M. Nießner. 2021. Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction. In CVPR.Google Scholar
- S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. In ICCV.Google Scholar
- S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. 1996. The lumigraph. In SIGGRAPH, ACM. 43--54.Google Scholar
- Y. Guo, D. Kang, L. Bao, Y. He, and S. Zhang. 2022. NeRFReN: Neural Radiance Fields with Reflections. In CVPR.Google Scholar
- P. Hedman, J. Philip, T. Price, J. M. Frahm, G. Drettakis, and G. Brostow. 2018. Deep blending for free-viewpoint image-based rendering. 37, 6 (2018), 1--15.Google Scholar
- P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow. 2016. Scalable inside-out image-based rendering. 35, 6 (2016), 1--11.Google Scholar
- P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. In ICCV.Google Scholar
- M. Jancosek and T. Pajdla. 2011. Multi-view reconstruction preserving weakly-supported surfaces. In CVPR. IEEE, 3121--3128.Google Scholar
- J. Johnson, A. Alahi, and L. Fei-Fei. 2016. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In ECCV (Lecture Notes in Computer Science, Vol. 9906), Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer, 694--711. Google Scholar
Cross Ref
- T. Karras, S. Laine, and T. Aila. 2019. A style-based generator architecture for generative adversarial networks. In CVPR. 4401--4410.Google Scholar
- D. Kingma and J. Ba. 2015. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2015).Google Scholar
- J. Kopf, F. Langguth, D. Scharstein, R. Szeliski, and M. Goesele. 2013. Image-based rendering in the gradient domain. 32, 6 (2013), 1--9.Google Scholar
- P. Labatut, J. Pons, and R. Keriven. 2007. Efficient multi-view reconstruction of large-scale scenes using interest points, delaunay triangulation and graph cuts. In ICCV. IEEE, 1--8.Google Scholar
- M. Levoy and P. Hanrahan. 1996. Light field rendering. In SIGGRAPH, ACM. 31--42.Google Scholar
- C. Lin, W. Ma, A. Torralba, and S. Lucey. 2021. BARF: Bundle-Adjusting Neural Radiance Fields. In ICCV.Google Scholar
- D. B. Lindell, J. N. P. Martel, and G. Wetzstein. 2021. AutoInt: Automatic Integration for Fast Neural Volume Rendering. In CVPR.Google Scholar
- L. Liu, J. Gu, K. Lin, T. Chua, and C. Theobalt. 2020a. Neural sparse voxel fields. In NeurIPS, Vol. 33.Google Scholar
- L. Liu, J. Gu, K. Z. Lin, T. S. Chua, and C. Theobalt. 2020b. Neural Sparse Voxel Fields. NeurIPS (2020).Google Scholar
- L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, and C. Theobalt. 2021. Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control. ACM SIGGRAPH Asia (2021).Google Scholar
Digital Library
- L. Liu, W. Xu, M. Zollhoefer, H. Kim, F. Bernard, M. Habermann, W. Wang, and C. Theobalt. 2019. Neural rendering and reenactment of human actor videos. 38, 5 (2019), 1--14.Google Scholar
- S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable Volumes from Images. (2019).Google Scholar
Digital Library
- S. Lombardi, T. Simon, G. Schwartz, M. Zollhoefer, Y. Sheikh, and J. Saragih. 2021. Mixture of Volumetric Primitives for Efficient Neural Rendering. arXiv:2103.01954 [cs.GR]Google Scholar
- R. Martin-Brualla, N. Radwan, M. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In CVPR.Google Scholar
- W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. 2000. Image-Based Visual Hulls. In SIGGRAPH, ACM. 6 pages.Google Scholar
- W. Matusik, H. Pfister, M. Brand, and L. McMillan. 2003. A Data-Driven Reflectance Model. ACM Transactions on Graphics 22, 3 (2003), 759--769.Google Scholar
Digital Library
- W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and L. Mcmillan. 2002. Image-Based 3D Photography Using Opacity Hulls. 21, 3 (2002), 427--437.Google Scholar
- N. Max. 1995. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics 1, 2 (1995), 99--108. Google Scholar
Digital Library
- A. Meka, C. Haene, R. Pandey, M. Zollhöfer, S. Fanello, G. Fyffe, A. Kowdle, X. Yu, J. Busch, J. Dourgarian, et al. 2019. Deep reflectance fields: high-quality facial reflectance field inference from color gradient illumination. 38, 4 (2019), 1--12.Google Scholar
- B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi, R. Ng, and A. Kar. 2019. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. 38, 4 (2019), 1--14.Google Scholar
- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and N. Ren. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV.Google Scholar
- D. Miller and Rubin. 1998. Lazy decompression of surface light fields for precomputed global illumination. Springer Vienna (1998).Google Scholar
Cross Ref
- C. Müller. 1966. Spherical harmonics / Claus Müller. Springer-Verlag Berlin ; New York. 45 p. : pages.Google Scholar
- T. Müller, A. Evans, C. Schied, and A. Keller. 2022. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. arXiv:2201.05989 (2022).Google Scholar
- M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. 2019. Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. In CVPR.Google Scholar
- M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. 2013. Real-time 3D reconstruction at scale using voxel hashing. 32, 6 (2013), 1--11.Google Scholar
- Nvidia. 2017--2018. Nvidia Corporation. TensorRT. https://developer.nvidia.com/tensorrt.Google Scholar
- R. Pandey, A. Tkach, S. Yang, P. Pidlypenskyi, J. Taylor, R. Martin-Brualla, A. Tagliasacchi, G. Papandreou, P. Davidson, C. Keskin, et al. 2019. Volumetric capture of humans with a single rgbd camera via semi-parametric learning. In CVPR. 9709--9718.Google Scholar
- J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. 2019a. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In CVPR. 165--174.Google Scholar
- K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. Goldman, S. Seitz, and R. Martin-Brualla. 2020. Deformable Neural Radiance Fields. In ICCV.Google Scholar
- K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman, R. Martin-Brualla, and S. M. Seitz. 2021. HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields. 40, 6, Article 238 (2021).Google Scholar
- T. Park, M. Liu, T. Wang, and J. Zhu. 2019b. Semantic image synthesis with spatially-adaptive normalization. In CVPR. 2337--2346.Google Scholar
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPS, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). 8024--8035.Google Scholar
- S. Peng, J. Dong, Q. Wang, S. Zhang, Q. Shuai, H. Bao, and X. Zhou. 2021a. Animatable Neural Radiance Fields for Human Body Modeling. In ICCV.Google Scholar
- S. Peng, Y. Zhang, Y. Xu, Q. Wang, Q. Shuai, H. Bao, and X. Zhou. 2021b. Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans. In CVPR.Google Scholar
- E. Penner and L. Zhang. 2017. Soft 3D reconstruction for view synthesis. 36, 6 (2017), 1--11.Google Scholar
- J. Philip, M. Gharbi, T. Zhou, A. A. Efros, and G. Drettakis. 2019. Multi-view relighting using a geometry-aware network. 38, 4 (2019), 1--14.Google Scholar
- J. Philip, S. Morgenthaler, M. Gharbi, and G. Drettakis. 2021. Free-viewpoint Indoor Neural Relighting from Multi-view Stereo. ACM Transactions on Graphics (2021).Google Scholar
- A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. 2021. D-NeRF: Neural Radiance Fields for Dynamic Scenes. In CVPR.Google Scholar
- C. Reiser, S. Peng, Y. Liao, and A. Geiger. 2021. KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs. arXiv:2103.13744 [cs.CV]Google Scholar
- K. Rematas, R. Martin-Brualla, and V. Ferrari. 2021. ShaRF: Shape-conditioned Radiance Fields from a Single View. arXiv preprint arXiv:2102.08860 (2021).Google Scholar
- G. Riegler and V. Koltun. 2020. Free View Synthesis. In ECCV.Google Scholar
- G. Riegler and V. Koltun. 2021. Stable View Synthesis. In CVPR.Google Scholar
- S. Rodriguez, S. Prakash, P. Hedman, and G. Drettakis. 2020. Image-Based Rendering of Cars using Semantic Labels and Approximate Reflection Flow. Proc. ACM Comput. Graph. Interact. 3 (2020).Google Scholar
- O. Ronneberger, P. Fischer, and T. Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention.Google Scholar
- J. L. Schonberger and J. M. Frahm. 2016. Structure-from-Motion Revisited. In CVPR. 4104--4113.Google Scholar
- K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger. 2020. Graf: Generative radiance fields for 3D-aware image synthesis. In NeurIPS, Vol. 33.Google Scholar
- H. Y. Shum and S. B. Kang. 2000. A Review of Image-based Rendering Techniques. Microsoft.Google Scholar
- K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR.Google Scholar
- S. N. Sinha, J. Kopf, M. Goesele, D. Scharstein, and R. Szeliski. 2012. Image-based rendering for scenes with reflections. 31, 4 (2012), 1--10.Google Scholar
- V. Sitzmann, S. Rezchikov, B. Freeman, J. Tenenbaum, and F. Durand. 2021. Light field networks: Neural scene representations with single-evaluation rendering. Advances in Neural Information Processing Systems 34 (2021).Google Scholar
- V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zollhofer. 2019a. Deepvoxels: Learning persistent 3d feature embeddings. In CVPR. 2437--2446.Google Scholar
- V. Sitzmann, M. Zollhöfer, and G. Wetzstein. 2019b. Scene representation networks: Continuous 3d-structure-aware neural scene representations. In NeurIPS. 1121--1132.Google Scholar
- P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T. Barron. 2021. NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis. In CVPR.Google Scholar
- P. P. Srinivasan, R. Tucker, J. T. Barron, R. Ramamoorthi, R. Ng, and N. Snavely. 2019. Pushing the boundaries of view extrapolation with multiplane images. In CVPR. 175--184.Google Scholar
- E. Sucar, S. Liu, J. Ortiz, and A. Davison. 2021. iMAP: Implicit Mapping and Positioning in Real-Time. In ICCV.Google Scholar
- C. Sun, M. Sun, and H. Chen. 2021. Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction. arXiv preprint arXiv:2111.11215 (2021).Google Scholar
- R. Szeliski and P. Golland. 1999. Stereo matching with transparency and matting. International Journal of Computer Vision 32, 1 (1999), 45--61.Google Scholar
Digital Library
- A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-Brualla, T. Simon, J. Saragih, M. Nießner, et al. 2020. State of the art on neural rendering. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 701--727.Google Scholar
Cross Ref
- A. Tewari, J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk, Y. Wang, C. Lassner, V. Sitzmann, R. Martin-Brualla, S. Lombardi, T. Simon, C. Theobalt, M. Niessner, J. T. Barron, G. Wetzstein, M. Zollhoefer, and V. Golyanik. 2021. Advances in Neural Rendering. arXiv:2111.05849 [cs.GR]Google Scholar
- J. Thies, M. Zollhöfer, and M. Nießner. 2019. Deferred neural rendering: Image synthesis using neural textures. 38, 4 (2019), 1--12.Google Scholar
- A. Trevithick and B. Yang. 2020. GRF: Learning a General Radiance Field for 3D Scene Representation and Rendering. In ICCV.Google Scholar
- D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and P. P. Srinivasan. 2022. Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields. In CVPR.Google Scholar
- Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. Trans. Img. Proc. 13, 4 (2004), 600--612. Google Scholar
Digital Library
- Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu. 2021. NeRF-: Neural Radiance Fields Without Known Camera Parameters. arXiv preprint arXiv:2102.07064 (2021).Google Scholar
- S. Wizadwongsa, P. Phongthawee, J. Yenphraphai, and S. Suwajanakorn. 2021. Nex: Real-time view synthesis with neural basis expansion. In CVPR. 8534--8543.Google Scholar
- D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H. Salesin, and W. Stuetzle. 2000. Surface light fields for 3D photography. In SIGGRAPH, ACM. 287--296.Google Scholar
- Y. Xie, T. Takikawa, S. Saito, Or Litany, S. Yan, N. Khan, F. Tombari, J. Tompkin, V. Sitzmann, and S. Sridhar. 2022. Neural Fields in Visual Computing and Beyond. Computer Graphics Forum (2022). Google Scholar
Cross Ref
- J. Xu, X. Wu, Z. Zhu, Q. Huang, Y. Yang, H. Bao, and W. Xu. 2021. Scalable Image-Based Indoor Scene Rendering with Reflections. 40, 4, Article 60 (2021), 14 pages. Google Scholar
Digital Library
- L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T. Lin. 2021. iNeRF: Inverting Neural Radiance Fields for Pose Estimation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
- A. Yu, S. Fridovich-Keil, M.Tancik, Q. Chen, B. Recht, and A. Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Networks. In CVPR.Google Scholar
- A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa. 2021a. Plenoctrees for real-time rendering of neural radiance fields. In ICCV. 5752--5761.Google Scholar
- A. Yu, V. Ye, M. Tancik, and A. Kanazawa. 2021b. pixelNeRF: Neural Radiance Fields from One or Few Images. In CVPR.Google Scholar
- C. Zhang and T. Chen. 2003. A survey on image-based rendering. Signal Processing Image Communication 19 (2003), 1--28.Google Scholar
Cross Ref
- K. Zhang, F. Luan, Q. Wang, K. Bala, and N. Snavely. 2021a. PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting. In CVPR. 5453--5462.Google Scholar
- K. Zhang, G. Riegler, N. Snavely, and V. Koltun. 2020. Nerf++: Analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020).Google Scholar
- X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and J. T. Barron. 2021b. Nerfactor: Neural factorization of shape and reflectance under an unknown illumination. 40, 6 (2021), 1--18.Google Scholar
Digital Library
- H. Zhou, S. Hadap, K. Sunkavalli, and D. W. Jacobs. 2019. Deep single-image portrait relighting. In ICCV. 7194--7202.Google Scholar
- T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. 2018. Stereo magnification: learning view synthesis using multiplane images. 37, 4 (2018), 1--12.Google Scholar
- Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and M. Pollefeys. 2022. NICE-SLAM: Neural Implicit Scalable Encoding for SLAM. In CVPR.Google Scholar
Index Terms
Scalable neural indoor scene rendering
Recommendations
Scalable image-based indoor scene rendering with reflections
This paper proposes a novel scalable image-based rendering (IBR) pipeline for indoor scenes with reflections. We make substantial progress towards three sub-problems in IBR, namely, depth and reflection reconstruction, view selection for temporally ...
Interactive Approximate Rendering of Reflections, Refractions, and Caustics
Reflections, refractions, and caustics are very important for rendering global illumination images. Although many methods can be applied to generate these effects, the rendering performance is not satisfactory for interactive applications. In this paper,...
Real-time multi-perspective rendering on graphics hardware
SIGGRAPH '06: ACM SIGGRAPH 2006 SketchesMulti-perspective rendering has a variety of applications; examples include lens refraction, curved mirror reflection, caustics, as well depiction and visualization. However, multi-perspective rendering is not yet practical on polygonal graphics ...





Comments