skip to main content
research-article

Implicit neural representation for physics-driven actuated soft bodies

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Active soft bodies can affect their shape through an internal actuation mechanism that induces a deformation. Similar to recent work, this paper utilizes a differentiable, quasi-static, and physics-based simulation layer to optimize for actuation signals parameterized by neural networks. Our key contribution is a general and implicit formulation to control active soft bodies by defining a function that enables a continuous mapping from a spatial point in the material space to the actuation value. This property allows us to capture the signal's dominant frequencies, making the method discretization agnostic and widely applicable. We extend our implicit model to mandible kinematics for the particular case of facial animation and show that we can reliably reproduce facial expressions captured with high-quality capture systems. We apply the method to volumetric soft bodies, human poses, and facial expressions, demonstrating artist-friendly properties, such as simple control over the latent space and resolution invariance at test time.

Skip Supplemental Material Section

Supplemental Material

122-576-supp-video.mp4

supplemental material

References

  1. Moritz Bächer, Espen Knoop, and Christian Schumacher. 2021. Design and Control of Soft Robots Using Differentiable Simulation. Current Robotics Reports 2, 2 (6 2021), 211--221. Google ScholarGoogle ScholarCross RefCross Ref
  2. Michael Bao, Matthew Cong, Stéphane Grabli, and Ronald Fedkiw. 2018. High-Quality Face Capture Using Anatomical Muscles. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (12 2018). http://arxiv.org/abs/1812.02836Google ScholarGoogle Scholar
  3. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics 33, 4 (7 2014), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dan Casas and Miguel A. Otaduy. 2018. Learning Nonlinear Soft-Tissue Dynamics for Interactive Avatars. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 1 (7 2018), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. 2020. pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis. CVPR 2021 (Oral) (12 2020). http://arxiv.org/abs/2012.00926Google ScholarGoogle Scholar
  6. Prashanth Chandran, Derek Bradley, Markus Gross, and Thabo Beeler. 2020. Semantic Deep Face Models. In 2020 International Conference on 3D Vision (3DV). IEEE, 345--354. Google ScholarGoogle ScholarCross RefCross Ref
  7. Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. 2019. A Differentiable Physics Engine for Deep Learning in Robotics. Frontiers in Neurorobotics 13 (3 2019). Google ScholarGoogle ScholarCross RefCross Ref
  8. Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2022. DiffPD: Differentiable Projective Dynamics. ACM Transactions on Graphics 41, 2 (4 2022), 1--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bernhard Egger, William A. P. Smith, Ayush Tewari, Stefanie Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian Bernard, Timo Bolkart, Adam Kortylewski, Sami Romdhani, Christian Theobalt, Volker Blanz, and Thomas Vetter. 2020. 3D Morphable Face Models---Past, Present, and Future. ACM Transactions on Graphics 39, 5 (10 2020), 1--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum 38, 2 (5 2019), 379--391. Google ScholarGoogle ScholarCross RefCross Ref
  11. Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian Coros. 2020. ADD: analytically differentiable dynamics for multi-body systems with frictional contact. ACM Transactions on Graphics 39, 6 (11 2020), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019. Real2Sim: visco-elastic parameter estimation from dynamic motion. ACM Transactions on Graphics 38, 6 (11 2019), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Philipp Holl, Vladlen Koltun, and Nils Thuerey. 2020. Learning to Control PDEs with Differentiable Physics. International Conference on Learning Representations (1 2020). http://arxiv.org/abs/2001.07457Google ScholarGoogle Scholar
  14. Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand. 2019a. DiffTaichi: Differentiable Programming for Physical Simulation. International Conference on Learning Representations (10 2019). http://arxiv.org/abs/1910.00935Google ScholarGoogle Scholar
  15. Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019b. ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 6265--6271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Xun Huang and Serge Belongie. 2017. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. ICCV 2017 (Oral) (3 2017). http://arxiv.org/abs/1703.06868Google ScholarGoogle Scholar
  17. Alexandru-Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly. 2017. Phace: Physics-based Face Modeling and Animation. ACM Transactions on Graphics 36, 4 (7 2017), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Petr Kadleček and Ladislav Kavan. 2019. Building Accurate Physics-based Face Models from Data. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 2 (7 2019), 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Theodore Kim and David Eberle. 2020. Dynamic deformables: implementation and production practicalities. In ACM SIGGRAPH 2020 Courses. ACM, New York, NY, USA, 1--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7--9, 2015, Conference Track Proceedings (12 2015). http://arxiv.org/abs/1412.6980Google ScholarGoogle Scholar
  21. Gergely Klár, Andrew Moffat, Ken Museth, and Eftychios Sifakis. 2020. Shape Targeting: A Versatile Active Elasticity Constitutive Model. In Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks. ACM, New York, NY, USA, 1--2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek Bradley, Christophe Hery, Bernd Bickel, Wojciech Jarosz, and Thabo Beeler. 2015. Recent Advances in Facial Appearance Capture. Computer Graphics Forum 34, 2 (5 2015), 709--733. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J P Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang Deng. 2014. Practice and Theory of Blendshape Facial Models. In Eurographics 2014 - State of the Art Reports, Sylvain Lefebvre and Michela Spagnuolo (Eds.). The Eurographics Association. Google ScholarGoogle ScholarCross RefCross Ref
  24. Ruilong Li, Karl Bladin, Yajie Zhao, Chinmay Chinara, Owen Ingraham, Pengda Xiang, Xinglei Ren, Pratusha Prasad, Bipin Kishore, Jun Xing, and Hao Li. 2020. Learning Formation of Physically-Based Face Attributes. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 3407--3416. Google ScholarGoogle ScholarCross RefCross Ref
  25. Junbang Liang, Ming C. Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Advances in Neural Information Processing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. 2015. SMPL: a skinned multi-person linear model. ACM Transactions on Graphics 34, 6 (11 2015), 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T.Y. Kim. 2020. Primal/Dual Descent Methods for Dynamics. Computer Graphics Forum 39, 8 (12 2020), 89--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. ICCV (4 2019). http://arxiv.org/abs/1904.03278Google ScholarGoogle Scholar
  29. Aleka McAdams, Andrew Selle, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Computing the singular value decomposition of 3x3 matrices with minimal branching and elementary floating point operations. Technical Report. University of Wisconsin-Madison Department of Computer Sciences.Google ScholarGoogle Scholar
  30. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (12 2019). http://arxiv.org/abs/1812.03828Google ScholarGoogle ScholarCross RefCross Ref
  31. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV. 405--421. Google ScholarGoogle ScholarCross RefCross Ref
  32. Nathan Mitchell, Court Cutting, and Eftychios Sifakis. 2015. GRIDiron: An interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures. ACM Transactions on Graphics 34, 4 (7 2015), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and Ira Kemelmacher-Shlizerman. 2021. StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation. (12 2021). http://arxiv.org/abs/2112.11427Google ScholarGoogle Scholar
  34. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (1 2019). http://arxiv.org/abs/1901.05103Google ScholarGoogle ScholarCross RefCross Ref
  35. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32. 8024--8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdfGoogle ScholarGoogle Scholar
  36. Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J. Black. 2015. Dyna: a model of dynamic human shape in motion. ACM Transactions on Graphics 34, 4 (7 2015), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yiling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2021. Differentiable Simulation of Soft Multi-body Systems. Advances in Neural Information Processing Systems 34 (2021).Google ScholarGoogle Scholar
  38. Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. 2020. Scalable Differentiable Physics for Learning and Control. International Conference on Machine Learning (7 2020). http://arxiv.org/abs/2007.02168Google ScholarGoogle Scholar
  39. Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W. Battaglia. 2020. Learning to Simulate Complex Physics with Graph Networks. International Conference on Machine Learning (2 2020). http://arxiv.org/abs/2002.09405Google ScholarGoogle Scholar
  40. Igor Santesteban, Elena Garces, Miguel A. Otaduy, and Dan Casas. 2020. SoftSMPL: Data-driven Modeling of Nonlinear Soft-tissue Dynamics for Parametric Humans. Computer Graphics Forum 39, 2 (5 2020), 65--75. Google ScholarGoogle ScholarCross RefCross Ref
  41. Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Transactions on Graphics 24, 3 (7 2005), 417--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Vincent Sitzmann, Julien N P Martel, Alexander W Bergman, David B Lindell, and Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation Functions. In NeurIPS 2020, Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.htmlGoogle ScholarGoogle Scholar
  43. Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis. 2021. Learning active quasistatic physics-based models from data. ACM Transactions on Graphics 40, 4 (8 2021), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. NeurIPS 2020 (Spotlight) (6 2020). http://arxiv.org/abs/2006.10739Google ScholarGoogle Scholar
  45. Jingwei Tang, Vinicius C. Azevedo, Guillaume Cordonnier, and Barbara Solenthaler. 2021. Honey, I Shrunk the Domain: Frequency-aware Force Field Reduction for Efficient Fluids Optimization. Computer Graphics Forum 40, 2 (5 2021), 339--353. Google ScholarGoogle ScholarCross RefCross Ref
  46. Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. 2021. CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. (10 2021). http://arxiv.org/abs/2110.09788Google ScholarGoogle Scholar
  47. Gaspard Zoss, Thabo Beeler, Markus Gross, and Derek Bradley. 2019. Accurate markerless jaw tracking for facial performance capture. ACM Transactions on Graphics 38, 4 (7 2019), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Gaspard Zoss, Derek Bradley, Pascal Bérard, and Thabo Beeler. 2018. An empirical rig for jaw animation. ACM Transactions on Graphics 37, 4 (8 2018), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Gaspard Zoss, Eftychios Sifakis, Markus Gross, Thabo Beeler, and Derek Bradley. 2020. Data-driven extraction and composition of secondary dynamics in facial performance capture. ACM Transactions on Graphics 39, 4 (7 2020). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Implicit neural representation for physics-driven actuated soft bodies

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 41, Issue 4
        July 2022
        1978 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3528223
        Issue’s Table of Contents

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2022
        Published in tog Volume 41, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader