skip to main content
research-article
Open Access

Generalized resampled importance sampling: foundations of ReSTIR

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

As scenes become ever more complex and real-time applications embrace ray tracing, path sampling algorithms that maximize quality at low sample counts become vital. Recent resampling algorithms building on Talbot et al.'s [2005] resampled importance sampling (RIS) reuse paths spatiotemporally to render surprisingly complex light transport with a few samples per pixel. These reservoir-based spatiotemporal importance resamplers (ReSTIR) and their underlying RIS theory make various assumptions, including sample independence. But sample reuse introduces correlation, so ReSTIR-style iterative reuse loses most convergence guarantees that RIS theoretically provides.

We introduce generalized resampled importance sampling (GRIS) to extend the theory, allowing RIS on correlated samples, with unknown PDFs and taken from varied domains. This solidifies the theoretical foundation, allowing us to derive variance bounds and convergence conditions in ReSTIR-based samplers. It also guides practical algorithm design and enables advanced path reuse between pixels via complex shift mappings.

We show a path-traced resampler (ReSTIR PT) running interactively on complex scenes, capturing many-bounce diffuse and specular lighting while shading just one path per pixel. With our new theoretical foundation, we can also modify the algorithm to guarantee convergence for offline renderers.

Skip Supplemental Material Section

Supplemental Material

075-584-supp-video.mp4

supplemental material

3528223.3530158.mp4

presentation

References

  1. Pablo Bauszat, Victor Petitjean, and Elmar Eisemann. 2017. Gradient-Domain Path Reusing. ACM Trans. Graph. 36, 6, Article 229 (nov 2017), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Philippe Bekaert, Mateu Sbert, and John H Halton. 2002. Accelerating Path Tracing by Re-Using Paths.. In Rendering Techniques. 125--134.Google ScholarGoogle Scholar
  3. Nikolaus Binder, Sascha Fricke, and Alexander Keller. 2019. Massively parallel path space filtering. arXiv preprint arXiv:1902.05942 (2019).Google ScholarGoogle Scholar
  4. Benedikt Bitterli. 2021. Correlations and reuse for fast and accurate physically based light transport. Ph.D. Dissertation. Dartmouth College. http://benedikt-bitterli.me/Data/dissertation.pdfGoogle ScholarGoogle Scholar
  5. Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. 2017. Reversible jump Metropolis light transport using inverse mappings. ACM Transactions on Graphics (TOG) 37, 1 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Transactions on Graphics (TOG) 39, 4 (2020), 148--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Guillaume Boissé. 2021. World-Space Spatiotemporal Reservoir Reuse for Ray-Traced Global Illumination. In SIGGRAPH Asia 2021 Technical Communications (Tokyo, Japan) (SA '21 Technical Communications). Association for Computing Machinery, New York, NY, USA, Article 22, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jakub Boksansky, Paula Jukarainen, and Chris Wyman. 2021. Rendering Many Lights with Grid-Based Reservoirs. In Ray Tracing Gems II. Springer, 351--365.Google ScholarGoogle Scholar
  9. Olivier Cappé, Arnaud Guillin, Jean-Michel Marin, and Christian P Robert. 2004. Population monte carlo. Journal of Computational and Graphical Statistics 13, 4 (2004), 907--929.Google ScholarGoogle ScholarCross RefCross Ref
  10. Chakravarty R. Alla Chaitanya, Laurent Belcour, Toshiya Hachisuka, Simon Premoze, Jacopo Pantaleoni, and Derek Nowrouzezahrai. 2018. Matrix Bidirectional Path Tracing. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations (Karlsruhe, Germany) (SR '18). Eurographics Association, Goslar, DEU, 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (jul 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Min-Te Chao. 1982. A general purpose unequal probability sampling plan. Biometrika 69, 3 (1982), 653--656. Google ScholarGoogle ScholarCross RefCross Ref
  13. Michael Donikian, Bruce Walter, Kavita Bala, Sebastian Fernandez, and Donald P. Greenberg. 2006. Accurate Direct Illumination Using Iterative Adaptive Sampling. IEEE Transactions on Visualization and Computer Graphics 12, 3 (may 2006), 353--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019. Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM Trans. Graph. 38, 4, Article 125 (jul 2019), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Abhijeet Ghosh, Arnaud Doucet, and Wolfgang Heidrich. 2006. Sequential Sampling for Dynamic Environment Map Illumination. In Symposium on Rendering, Tomas Akenine-Moeller and Wolfgang Heidrich (Eds.). The Eurographics Association. Google ScholarGoogle ScholarCross RefCross Ref
  16. Adrien Gruson, Binh-Son Hua, Nicolas Vibert, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2018. Gradient-domain volumetric photon density estimation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Adam Guetz. 2012. Monte Carlo Methods for Structured Data. Stanford University.Google ScholarGoogle Scholar
  18. Henrik Halen, Andreas Brinck, Kyle Hayward, and Xiangshun Bei. 2021. Global Illumination Based on Surfels. In SIGGRAPH Courses; Advances in Real-Time Rendering.Google ScholarGoogle Scholar
  19. Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron Lefohn. 2020. Neural Temporal Adaptive Sampling and Denoising. Computer Graphics Forum (2020). Google ScholarGoogle ScholarCross RefCross Ref
  20. Paul S Heckbert. 1990. Adaptive radiosity textures for bidirectional ray tracing. In Proceedings of the 17th annual conference on Computer graphics and interactive techniques. 145--154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Heitz and L. Belcour. 2019. Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames. Computer Graphics Forum 38, 4 (2019), 149--158. Google ScholarGoogle ScholarCross RefCross Ref
  22. Eric Heitz, Stephen Hill, and Morgan McGuire. 2018. Combining Analytic Direct Illumination and Stochastic Shadows. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Association for Computing Machinery, New York, NY, USA, Article 2, 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Binh-Son Hua, Adrien Gruson, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2017. Gradient-domain photon density estimation. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 31--38.Google ScholarGoogle Scholar
  24. Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek Nowrouzezahrai, Elmar Eisemann, and Toshiya Hachisuka. 2019. A Survey on Gradient-Domain Rendering. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 455--472.Google ScholarGoogle Scholar
  25. Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: A markov chain monte carlo technique for rendering scenes with difficult specular transport. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Simon Kallweit, Petrik Clarberg, Craig Kolb, Kai-Hwa Yao, Theresa Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Moller, Chris Wyman, Cyril Crassin, and Nir Benty. 2021. The Falcor Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.Google ScholarGoogle Scholar
  28. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. Computer Graphics Forum 21, 3 (2002), 531--540. Google ScholarGoogle ScholarCross RefCross Ref
  29. Markus Kettunen. 2020. Gradient-Domain Methods for Realistic Image Synthesis. Ph.D. Dissertation. Aalto University.Google ScholarGoogle Scholar
  30. Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain path tracing. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Emmett Kilgariff, Henry Moreton, Nick Stam, and Brandon Bell. 2018. NVIDIA Turing Architecture In-Depth. https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/. [Online; accessed 9-December-2021].Google ScholarGoogle Scholar
  32. Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. In Proc. the International Conference on Computational Graphics and Visualization Techniques, Vol. 93. 145--153.Google ScholarGoogle Scholar
  33. Yu-Chi Lai, Shao Hua Fan, Stephen Chenney, and Charcle Dyer. 2007. Photorealistic image rendering with population monte carlo energy redistribution. In Proceedings of the 18th Eurographics conference on Rendering Techniques. 287--295.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-domain metropolis light transport. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Faming Liang and Sooyoung Cheon. 2009. Monte Carlo dynamically weighted importance sampling for spatial models with intractable normalizing constants. 197 (dec 2009), 012004. Google ScholarGoogle ScholarCross RefCross Ref
  36. Daqi Lin, Chris Wyman, and Cem Yuksel. 2021. Fast Volume Rendering with Spatiotemporal Reservoir Resampling. ACM Transactions on Graphics (TOG) 40, 6 (2021), to appear.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Jun S Liu and Jun S Liu. 2001. Monte Carlo strategies in scientific computing. Vol. 10. Springer, 36--37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Marco Manzi, Markus Kettunen, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain bidirectional path tracing. (2015).Google ScholarGoogle Scholar
  39. Marco Manzi, Markus Kettunen, Frédo Durand, Matthias Zwicker, and Jaakko Lehtinen. 2016. Temporal gradient-domain path tracing. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Marco Manzi, Fabrice Rousselle, Markus Kettunen, Jaakko Lehtinen, and Matthias Zwicker. 2014. Improved sampling for gradient-domain metropolis light transport. ACM Transactions on Graphics (TOG) 33, 6 (2014), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Pierre Moreau, Matt Pharr, and Petrik Clarberg. 2019. Dynamic Many-Light Sampling for Real-Time Ray Tracing. In High-Performance Graphics - Short Papers, Markus Steinberger and T. Foley (Eds.). The Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (oct 2019), 19 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum 36, 4 (2017), 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Kosuke Nabata, Kei Iwasaki, and Yoshinori Dobashi. 2020. Resampling-Aware Weighting Functions for Bidirectional Path Tracing Using Multiple Light Sub-Paths. ACM Trans. Graph. 39, 2, Article 15 (mar 2020), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yaobin Ouyang, Shiqiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni. 2021. ReSTIR GI: Path Resampling for Real-Time Path Tracing. Computer Graphics Forum 40, 8 (2021), 17--29. Google ScholarGoogle ScholarCross RefCross Ref
  46. Jacopo Pantaleoni. 2020. Online Path Sampling Control with Progressive Spatiotemporal Filtering. SN Computer Science 279 (aug 2020).Google ScholarGoogle Scholar
  47. Christoph Peters. 2021. BRDF Importance Sampling for Polygonal Lights. ACM Trans. Graph. 40, 4, Article 140 (jul 2021), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Victor Petitjean, Pablo Bauszat, and Elmar Eisemann. 2018. Spectral Gradient Sampling for Path Tracing. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 45--53.Google ScholarGoogle Scholar
  49. Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George Drettakis. 2015. Probabilistic Connections for Bidirectional Path Tracing. Comput. Graph. Forum 34, 4 (jul 2015), 75--86.Google ScholarGoogle Scholar
  50. DB Rubin. 1987. A Noniterative Sampling/Importance resampling alternative to data augmentation for creating a few imputations when fractions of missing information are modest: The SIR algorithm. J. Amer. Statist. Assoc. 82 (1987), 544--546.Google ScholarGoogle ScholarCross RefCross Ref
  51. Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estimation for Real-Time Adaptive Temporal Filtering. Proc. ACM Comput. Graph. Interact. Tech. 1, 2, Article 24 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo Techniques for Direct Lighting Calculations. ACM Trans. Graph. 15, 1 (jan 1996), 1--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Tomasz Stachowiak. 2015. Stochastic Screen-Space Reflections. In Advances in Real Time Rendering, (ACM SIGGRAPH Courses). Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Weilun Sun, Xin Sun, Nathan A Carr, Derek Nowrouzezahrai, and Ravi Ramamoorthi. 2017. Gradient-Domain Vertex Connection and Merging.. In EGSR (EI&I). 83--92.Google ScholarGoogle Scholar
  55. László Szésci, László Szirmay-Kalos, and Csaba Kelemen. 2003. Variance reduction for Russian-roulette. (2003).Google ScholarGoogle Scholar
  56. Justin Talbot, David Cline, and Parris Egbert. 2005. Importance Resampling for Global Illumination. In Eurographics Symposium on Rendering (2005), Kavita Bala and Philip Dutre (Eds.). The Eurographics Association. Google ScholarGoogle ScholarCross RefCross Ref
  57. Justin F Talbot. 2005. Importance resampling for global illumination. Brigham Young University.Google ScholarGoogle Scholar
  58. Lorenzo Tessari, Johannes Hanika, and Carsten Dachsbacher. 2017. Local quasi-monte carlo exploration. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations. 71--81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Yusuke Tokuyoshi and Takahiro Harada. 2019. Hierarchical Russian Roulette for Vertex Connections. ACM Trans. Graph. 38, 4, Article 36 (jul 2019), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Joran Van de Woestijne, Roald Frederickx, Niels Billen, and Philip Dutré. 2017. Temporal coherence for metropolis light transport. In Eurographics Symposium on Rendering-Experimental Ideas & Implementations. Eurographics Association, 55--63.Google ScholarGoogle Scholar
  61. Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Stanford University.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. USA, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian Online Regression for Adaptive Direct Illumination Sampling. ACM Trans. Graph. 37, 4, Article 125 (jul 2018), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and Alexander Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH 2019 Courses (Los Angeles, California) (SIGGRAPH '19). ACM, New York, NY, USA, Article 18, 77 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. 24, 3 (jul 2005), 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. 2007. Microfacet Models for Refraction through Rough Surfaces. Rendering techniques 2007 (2007), 18th.Google ScholarGoogle Scholar
  68. Rex West, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. 2020. Continuous multiple importance sampling. ACM Transactions on Graphics (TOG) 39, 4 (2020), 136--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Chris Wyman and Alexey Panteleev. 2021. Rearchitecting Spatiotemporal Resampling for Production. In ACM/EG Symposium on High Perfrormance Graphics. 23--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Junqiu Zhu, Yaoyi Bai, Zilin Xu, Steve Bako, Edgar Velázquez-Armendáriz, Lu Wang, Pradeep Sen, Miloš Hašan, and Ling-Qi Yan. 2021. Neural Complex Luminaires: Representation and Rendering. ACM Trans. Graph. 40, 4, Article 57 (jul 2021), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Generalized resampled importance sampling: foundations of ReSTIR

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader