skip to main content
research-article
Open Access

A general two-stage initialization for sag-free deformable simulations

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

Initializing simulations of deformable objects involves setting the rest state of all internal forces at the rest shape of the object. However, often times the rest shape is not explicitly provided. In its absence, it is common to initialize by treating the given initial shape as the rest shape. This leads to sagging, the undesirable deformation under gravity as soon as the simulation begins. Prior solutions to sagging are limited to specific simulation systems and material models, most of them cannot handle frictional contact, and they require solving expensive global nonlinear optimization problems.

We introduce a novel solution to the sagging problem that can be applied to a variety of simulation systems and materials. The key feature of our approach is that we avoid solving a global nonlinear optimization problem by performing the initialization in two stages. First, we use a global linear optimization for static equilibrium. Any nonlinearity of the material definition is handled in the local stage, which solves many small local problems efficiently and in parallel. Notably, our method can properly handle frictional contact orders of magnitude faster than prior work. We show that our approach can be applied to various simulation systems by presenting examples with mass-spring systems, cloth simulations, the finite element method, the material point method, and position-based dynamics.

Skip Supplemental Material Section

Supplemental Material

3528223.3530165.mp4

presentation

064-635-supp-video.mp4

supplemental material

References

  1. David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). ACM, New York, NY, USA, 43--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and Floraine Berthouzoz. 2016. Physics-Driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles Macklin. 2014. A Survey on Position-Based Simulation Methods in Computer Graphics. Comput. Graph. Forum 33, 6 (sep 2014), 228--251.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean-Luc Lévundefinedque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Trans. Graph. 25, 3 (July 2006), 1180--1187.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numerical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 33, 4, Article 95 (July 2014), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Chen, Q. Zhu, A. Kaufman, and S. Muraki. 1998. Physically-Based Animation of Volumetric Objects. In Proceedings of the Computer Animation (CA '98). IEEE Computer Society, USA, 154.Google ScholarGoogle Scholar
  7. Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but Responsive Cloth. ACM Trans. Graph. 21, 3 (July 2002), 604--611.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. 2001. Dynamic Real-Time Deformations Using Space Time & Adaptive Sampling. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). ACM, New York, NY, USA, 31--36.Google ScholarGoogle Scholar
  9. Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, Gilles Daviet, and Joëlle Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans. Graph. 32, 6, Article 159 (Nov. 2013), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, and Joëlle Thollot. 2010. Stable Inverse Dynamic Curves. ACM Trans. Graph. 29, 6, Article 137 (Dec. 2010), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-Hornung, and Mark Pauly. 2014. Assembling Self-Supporting Structures. ACM Trans. Graph. 33, 6, Article 214 (nov 2014), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly Rubber: An Implicit Material Point Method for Simulating Non-Equilibrated Viscoelastic and Elastoplastic Solids. ACM Trans. Graph. 38, 4, Article 118 (July 2019), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods. ACM Trans. Graph. 37, 6, Article 254 (Dec. 2018), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Sunil Hadap. 2006. Oriented Strands: Dynamics of Stiff Multi-Body System. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vienna, Austria) (SCA '06). Eurographics Association, Goslar, DEU, 91--100.Google ScholarGoogle Scholar
  15. Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. 2018. A Moving Least Squares Material Point Method with Displacement Discontinuity and Two-Way Rigid Body Coupling. ACM Trans. Graph. (TOG) 37, 4 (2018), 150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hayley Iben, Jacob Brooks, and Christopher Bolwyn. 2019. Holding the Shape in Hair Simulation. In ACM SIGGRAPH 2019 Talks (Los Angeles, California) (SIGGRAPH '19). ACM, New York, NY, USA, Article 59, 2 pages.Google ScholarGoogle Scholar
  17. Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic Elastoplasticity for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4, Article 152 (July 2017), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The Affine Particle-in-Cell Method. ACM Trans. Graph. 34, 4, Article 51 (July 2015), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5, Article 164 (dec 2008), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Doo-Won Lee and Hyeong-Seok Ko. 2001. Natural Hairstyle Modeling and Animation. Graph. Models 63, 2 (March 2001), 67--85.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM Trans. Graph. 39, 4, Article 49 (jul 2020), 20 pages.Google ScholarGoogle Scholar
  22. Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans. Graph. 37, 6, Article 201 (dec 2018), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Miles Macklin and Matthias Muller. 2021. A Constraint-Based Formulation of Stable Neo-Hookean Materials. In Motion, Interaction and Games (Virtual Event, Switzerland) (MIG '21). ACM, New York, NY, USA, Article 12, 7 pages.Google ScholarGoogle Scholar
  24. Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-Based Simulation of Compliant Constrained Dynamics. In Proceedings of the 9th International Conference on Motion in Games (Burlingame, California) (MIG '16). ACM, New York, NY, USA, 49--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011. Example-Based Elastic Materials. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH '11). ACM, New York, NY, USA, Article 72, 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of Stable Planar-rod Structures. ACM Trans. Graph. 35, 4, Article 86 (July 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rajaditya Mukherjee, Longhua Wu, and Huamin Wang. 2018. Interactive Two-Way Shape Design of Elastic Bodies. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 11 (July 2018), 17 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cutler. 2002. Stable Real-Time Deformations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas) (SCA '02). ACM, New York, NY, USA, 49--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Christian Schumacher, Bernhard Thomaszewski, Stelian Coros, Sebastian Martin, Robert Sumner, and Markus Gross. 2012. Efficient Simulation of Example-Based Materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Lausanne, Switzerland) (SCA '12). Eurographics Association, Goslar, DEU, 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A Mass Spring Model for Hair Simulation. ACM Trans. Graph. 27, 3 (aug 2008), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Hijung V. Shin, Christopher F. Porst, Etienne Vouga, John Ochsendorf, and Frédo Durand. 2016. Reconciling Elastic and Equilibrium Methods for Static Analysis. ACM Trans. Graph. 35, 2, Article 13 (feb 2016), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner's Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012 Courses (Los Angeles, California) (SIGGRAPH '12). ACM, New York, NY, USA, Article 20, 50 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational Design of Rubber Balloons. Comput. Graph. Forum 31, 2pt4 (May 2012), 835--844.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational Design of Actuated Deformable Characters. ACM Trans. Graph. 32, 4, Article 82 (July 2013), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4, Article 102 (July 2013), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. (TOG) 36, 4 (2017), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Demetri Terzopoulos. 1995. Heating and melting deformable models (from goop to glop). In Graphics interface, Vol. 89. Canadian Information Processing Society, Toronto, Ontario, Canada, 219--226.Google ScholarGoogle Scholar
  39. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically Deformable Models. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 205--214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Christopher D. Twigg and Doug L. James. 2008. Backward Steps in Rigid Body Simulation. ACM Trans. Graph. 27, 3, Article 25 (Aug. 2008), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Christopher D. Twigg and Zoran Kačić-Alesić. 2011. Optimization for Sag-Free Simulations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vancouver, British Columbia, Canada) (SCA '11). ACM, New York, NY, USA, 225--236.Google ScholarGoogle Scholar
  42. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261--272.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Edwin A. H. Vollebregt. 2014. The Bound-Constrained Conjugate Gradient Method for Non-negative Matrices. Journal of Optimization Theory and Applications 162, 3 (01 Sep 2014), 931--953.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Andreas Wächter and Lorenz T. Biegler. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106 (2006), 25--57.Google ScholarGoogle ScholarCross RefCross Ref
  45. Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015. Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. 34, 4, Article 94 (July 2015), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective and Position-Based Dynamics. ACM Trans. Graph. 34, 6, Article 246 (Oct. 2015), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural Modeling of Structurally-Sound Masonry Buildings. ACM Trans. Graph. 28, 5 (dec 2009), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Kui Wu and Cem Yuksel. 2016. Real-Time Hair Mesh Simulation. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Redmond, Washington) (I3D '16). ACM, New York, NY, USA, 59--64.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017. Interactive Design and Stability Analysis of Decorative Joinery for Furniture. ACM Trans. Graph. 36, 2, Article 20 (mar 2017), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A general two-stage initialization for sag-free deformable simulations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader